
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

SPECIAL ISSUE PAPER

faas-sim: A Trace-Driven Simulation Framework for Serverless
Edge Computing Platforms

Philipp Raith* | Thomas Rausch | Alireza Furutanpey | Schahram Dustdar

1Distributed Systems Group, TU Wien
Wien, Austria

Correspondence
*Philipp Raith, Email:
p.raith@dsg.tuwien.ac.at

Abstract

This paper presents faas-sim, a simulation framework tailored to serverless edge
computing platforms. In serverless computing, platform operators are tasked with ef-
ficiently managing distributed computing infrastructure completely abstracted from
application developers. To that end, platform operators and researchers need tools
to design, build, and evaluate resource management techniques that efficiently use
of infrastructure while optimizing application performance. This challenge is exac-
erbated in edge computing scenarios, where, compared to cloud computing, there is
a lack of reference architectures, design tools, or standardized benchmarks. faas-sim
bridges this gap by providing (a) a generalized model of serverless systems that builds
on the function-as-a-service abstraction, (b) a simulator that uses trace data from
real-world edge computing testbeds and representative workloads, and (c) a network
topology generator to model and simulate distributed and heterogeneous edge-cloud
systems. We present the conceptual design, implementation, and a thorough evalua-
tion of faas-sim. By running experiments on both real-world test beds and replicating
them using faas-sim, we show that the simulator provides accurate results and rea-
sonable simulation performance. We have profiled a wide range of edge computing
infrastructure and workloads, focusing on typical edge computing scenarios such as
edge AI inference or data processing. Moreover, we present several instances where
we have successfully used faas-sim to either design, optimize, or evaluate serverless
edge computing systems.
KEYWORDS:
Simulation; Co-Simulation; Serverless Edge Computing; Edge-Cloud Continuum

1 INTRODUCTION

Context & Background
Serverless edge computing is an emerging distributed computing model that applies principles from serverless cloud computing
to edge computing systems1. In traditional serverless computing, serverless platforms hide the underlying infrastructure of
massive cloud data centers from application developers while giving platform operators the controls to schedule and scale
workloads to optimize operational goals2. The edge-cloud continuum extends the narrow cloud- or edge-centric view to a
hierarchical geo-distributed system, ranging from resource-constrained edge devices to large-scale cloud data centers3. Applying
the operational mechanisms that enable serverless computing in this new environment is highly challenging and subject to

2 RAITH ET AL

active research4,1,3. Current cloud-centric orchestration services need to be adapted in their architecture5, which is typically
centralized and can form bottlenecks. While concepts like federated clouds can help connect multiple on-premises data centers
and mitigate scalability issues6, how current serverless platforms behave in these heterogeneous and geo-distributed scenarios
is not well understood. New challenges introduced by the edge-cloud continuum include discovering and forming computing
clusters7, incorporating new computing device types while aiming for resource efficiency8, or dealing with data and computation
movement trade-offs9.
Motivation
With the growing adoption of serverless edge computing and the complexity inherent to these systems, there is a pressing need
for effective evaluation frameworks to assess the performance and help aid the design of serverless edge computing platforms. In
cloud computing research, there is a long history of well-understood benchmarks10, testbeds11, and trace data sets12 to perform
systems evaluations. Evaluating edge computing systems is much more difficult due to the lack of established benchmarks, ref-
erence architectures, trace data sets, or real-world testbeds13. Researchers must invest considerable resources to create testbeds
and benchmarks often tailored to the system they are evaluating14. This then often leads to evaluations that do not allow gener-
alizable conclusions about the performance of the systems under the wide variety of conditions that the edge-cloud continuum
provides. Simulators help to fill this gap by allowing quick iterations over ideas and evaluating their feasibility before deploy-
ing them on real-world hardware15. They allow the creation of synthetic infrastructure according to specific parameters, such
as deployment density in geo-distributed settings or heterogeneity of compute nodes13, thereby vastly expanding the evaluation
parameter space. Moreover, simulations can facilitate use cases such as tuning serverless function adaptation strategies16, re-
source planning, cost prediction, and application performance estimation. As we explore in this paper, simulators can even be
used in co-simulation, where systems optimize themselves during runtime by evaluating different scenarios using the simulator.
Challenges
In recent years, numerous simulators have emerged for different system environments, such as cloud computing17 IoT18,19
serverless computing20,15,21, and edge computing22,23. However, existing work does not thoroughly investigate the requirements,
use cases, and solution approaches to address the challenges described in the previous subsection. Moreover, many state-of-the-
art systems simulators, such as CloudSim17 and its many derivatives23,22, build on oversimplified resource models that have
several limitations that we analyze in depth in this paper. From studying the current state-of-the-art and analyzing simulation
requirements, we summarize the challenges for building a modern simulator for serverless edge computing platforms as follows:

(i) To seamlessly transfer simulation designs to real-world systems, the domain model should generalize edge-cloud simulators
to include serverless computational models. (ii) The simulator should have strong support to evaluate orchestration strategies as
they are essential for governing the overall behavior of function deployments. Specifically, serverless function adaptations (scal-
ing, placement, and routing) should be first-class entities for users to modify and extend. (iii) Since serverless edge computing
is still evolving, the simulation engine should strongly emphasize modularity and extensibility. (iv) High fidelity simulators are
typically slow and challenging to implement but closely resemble real-world conditions. Conversely, low fidelity simulators are
fast and straightforward to implement. Hence, the simulator should be configurable to accommodate the current needs of client
programmers and platform designers and create low or high fidelity simulations. (v) The spatio-temporal context in simulations
is highly application specific, i.e., it requires careful modeling of component interference and user access patterns. Consequently,
client programmers and platform designers should be able to integrate custom resource models. (vi) The simulation should
support programmable topologies that scale for large clusters to model the heterogeneous resource aggregates.
Contributions
We have built faas-sim to address these challenges and overcome the limitations of state-of-the-art simulators for serverless edge
computing platforms. faas-sim is a trace-driven stochastic discrete-event simulation engine, enabling the fine-grained evaluation
of serverless edge computing platforms on edge-cloud infrastructures. It simulates the deployment, execution, and resource
consumption of serverless workloads on different types of computing hardware and comes with a flow-based network simulator
based on the network topology synthesizer Ether 13. Our code framework provides a generalized serverless system model that
allows modeling a wide range of function adaptation mechanisms and platform optimization algorithms, as well as developing
reusable benchmarks and experiments. The simulation engine has a flexible performance and resource modeling approach to
evaluate common system performance indicators such as resource consumption, function execution time, data throughput, or
network usage. faas-sim is trace-driven and relies on data from real profiling experiments. It ships with a wide range of profiled
workloads and compute nodes that can be used out of the box to bootstrap experiments, but users can provide custom profiling

RAITH ET AL 3

traces to model other workloads and hardware. faas-sim is integrated into the Edgerun project 1, offering extensive tooling
to support researchers and practitioners performing edge-cloud experiments. It is written in Python, built using the discrete
event simulation engine SimPy24, and integrates seamlessly with modern data science tools. The objective of faas-sim and the
complementary Edgerun ecosystem is to aid researchers and platform designers in developing and evaluating new serverless
edge platforms. For example, the experimentation framework Galileo14 can run experiments on testbeds and pre-process traces
that faas-sim expects.

We summarize our contributions as follows:
• faas-sim, an open-source2 serverless edge computing simulator based on the design and performance data of real-world

platforms.
• faas-sim enables researchers and practitioners to design, implement, model, and evaluate serverless platform architectures

and operational strategies such as function adaptations, scheduling, or load-balancing algorithms.
• An efficient performance and resource modeling approach that uses profiling data from real-world edge-cloud workloads

and compute infrastructure.
• A set of profiling benchmark traces included in faas-sim to bootstrap simulations.
• An evaluation on a real-world testbed demonstrating the accuracy of our network simulator.
• A use case-based evaluation showing the capabilities of faas-sim, including resource planning and co-simulation-driven

function adaptations.
Outline
The remainder of the paper is structured as follows. Section 2 introduces the simulation-driven design process of serverless edge
computing. Specifically, we introduce two main tasks that serverless edge platforms must implement. Based on use cases, we
show how our simulation can facilitate implementation and highlight the resulting simulation challenges. Afterward, Section 3
describes the conceptual model, architecture of faas-sim, and various models for resources, performance, and network. Section 4
represents the evaluation of our work. It is structured into multiple parts and evaluates faas-sim’s ability to model the simulation
use cases we present in Section 2, shows traces that come with faas-sim, evaluates the network simulation and showcases its
flexible domain model by implementing the reverse proxy component of OpenFaaS25. Afterward, Section 5 highlights the main
similarities and differences between ours and other simulation engines. Section 6 concludes our work and outlines future tasks.

2 SIMULATION-DRIVEN SERVERLESS EDGE COMPUTING DESIGN

In the following, we describe fundamental aspects of our work revolving around serverless edge computing and simulations.
We introduce in Section 2.1 serverless edge computing in general and the tasks of designing platforms and function adaptation
strategies which faas-sim intends to support. Therefore, we show in Section 2.2, use cases that facilitate the design process of
platforms and address the simulation challenges that arise.

2.1 Serverless edge computing
Serverless edge computing extends serverless computing to manage resources and applications across the edge-cloud con-
tinuum1. Serverless computing combines Function-as-a-Service (FaaS) and Backend-as-a-Service (BaaS)2. FaaS enables
developers to split complex applications into multiple simple functions, package and upload them. The FaaS provider is re-
sponsible for placing and scaling function replicas and routing requests to running replicas. These are the main adaptation
mechanisms of FaaS platforms to manage function deployments dynamically. Platform clients can invoke functions through var-
ious triggers. A client can send an HTTP request forwarded through a router (e.g., application-layer load balancer) to a function
replica. Clients can publish messages in a queue, and brokers are responsible for forwarding them to function replicas. Other

1https://github.com/edgerun/
2https://github.com/edgerun/faas-sim

4 RAITH ET AL

event-driven triggers include file and database changes.2. Function replicas are typically stateless and only have ephemeral stor-
age. However, stateful function support is actively explored and commercially available (e.g., on Microsoft’s Azure Functions
platform26). Replicas cannot rely on the assumption that data is locally available and must fetch it from backend services. BaaS
enables FaaS and manages various services such as databases, message middleware, routers, and caches. The autonomous adap-
tations of backend service components are crucial to succeed in the edge-cloud continuum and guarantee operational goals27.
Adaptations are essential for serverless platforms and directly impact operational goals. Each of the adaptation mechanisms can
have different implementations. For example, placement can have various implementations, such as optimization-based9 or AI-
driven28. Scaling can be reactive or proactive, while platforms can route centralized (e.g., a single gateway that all requests go
through) or decentralized (e.g., where multiple gateways exist). These options are not exhaustive and should only highlight dif-
ferent ways of adapting function deployments. Interactions between the adaptation mechanisms are also complex. The system’s
performance after updating them can lead to unexpected behavior. Serverless edge computing represents a complex system fac-
ing many tasks and challenges. Figure 1 shows an example of a serverless edge computing platform. Note that requests are
routed decentralized, but adaptations are made centrally in the cloud. This architecture might not be feasible due to the cloud’s
centralized scaling and placement components. However, a naive decentralization approach can lead to other problems, such
as state sharing and consistency problems29. The figure also emphasizes that serverless platforms must implement adaptation
mechanisms for FaaS and BaaS. The platform must place and scale function replicas and manage the backend services.

Gateway

HTTP Events

Message Broker

Gateway

HTTP

Gateway

Load Balancer

Vienna

Frankfurt Sydney

Scaling PlacementScaling Placement

FaaSBaaS

FaaS

BaaS

Middleware

Routing

Caching

Message
Brokers

Storage

Figure 1 Example platform with decentralized gateways and centralized scaling and placement components

Operational goals can range from performance (e.g., response time) to privacy (e.g., execution location) and are crucial for
emerging application paradigms (e.g., Edge Intelligence30). Edge Intelligence emphasizes and requires the execution of applica-
tions across the edge-cloud continuum. Applications may require ultra-low latency (e.g., < 10 milliseconds), have strict privacy
constraints (e.g., health data), and are formulated as complex workflows consisting of multiple applications, each having different
requirements (e.g., AI pipelines)31. Serverless adaptations are not only based on requirements but must consider environmental
changes. A key characteristic of the edge-cloud continuum is its dynamic and heterogeneous environment. Therefore, platforms
must be resilient, and their adaptation mechanisms must continuously evolve and cope with changes. These changes stem from
the infrastructure side (e.g., nodes fail, new nodes join), from new function requirements (e.g., privacy), or unseen functions.
This introduction to serverless edge computing should give a broad overview of the complex inter-dependencies between the
platform architecture and serverless function adaptations. However, we want to give more details about these two aspects of
platform design and how they can benefit from faas-sim and the simulation challenges they introduce.

RAITH ET AL 5

Scaling

Placement

Router

Requests

Frankfurt

Requests

Sydney

Cloud

(a) Centralized Platform Architecture

Scaling

Requests

Frankfurt

Router

Requests

Sydney

Router

Requests

Router

Global

Placement

Local

Placement

Local

Placement

Cloud

(b) Hybrid Platform Architecture

Scaling

Placement

Requests

Frankfurt

Router

Requests

Sydney

Router

Requests

Router

Scaling

Placement

Scaling

Placement

Cloud

(c) Decentralized Platform Architecture

Figure 2 Three possible Platform Architectures for Serverless (Edge) Computing

2.1.1 Platform architecture
In this work, the platform architecture determines the deployment (e.g., location of execution) and the responsibilities of the
serverless function adaptation components, and which technologies the execution model consists of (e.g., function runtime).
Thus, a simulation tool should be able to model these different aspects, from the placement of components to the underlying
function runtimes. To highlight the difficulty in selecting an architecture, we briefly describe three platform architectures that
are currently deployed or plausible for serverless edge computing platforms. This comparison should emphasize the need for
tools that can evaluate different platforms without the burden of implementing each platform on a real-world system. Figure 2
depicts these architectures on an infrastructure that consists of three computing clusters exist (i.e., Cloud, Sydney, and Frank-
furt). It is plausible that the number of computing clusters is much higher and consists of heterogeneous devices and network
conditions. Thus, introducing the simulation challenge to be flexible regarding scenario definition. The first architecture is the
typical cloud-centric Centralized Platform Architecture. It deploys a single entry point for users in the cloud, and placement and
scaling components are also situated there. In this example, all components reside in the cloud, and requests must travel from
the edge to the data center. This architecture has several shortcomings and represents how most commercial and open-source
serverless platforms are built (e.g., OpenFaaS25, Knative32, Fission33, OpenWhisk34, AWS Lambda35). The main shortcom-
ing is that requests must travel to the cloud to be handled, which increases network latency and diminishes the advantages of
function instances at the edge. The Hybrid Platform Architecture shows an approach that deploys routing components at the
edge and deploys a two-step placement approach16. The main differences to the Central Platform Architecture are decentralized
router instances and the decentralized placement approach. The scaling component still resides in the cloud and decides when
new function instances are necessary (or when to remove instances). The global placement component decides the computing
cluster, and the local placement component must select a node. This architecture scales better because the global placement com-
ponent can use simple heuristic algorithms while the local placement component can use complex algorithms. The drawback of
this approach is that the cloud components can still be a bottleneck, which the design must incorporate. The Decentralized Plat-
form Architecture deploys placement, scaling, and routing components in each computing cluster36. This architecture offers the
advantage of decentralized components and high scalability. However, implementing this design can be challenging as it must
coordinate placements and routing between computing clusters.

Other variants are possible; for example, the placement components can have distributed implementations that increase the
complexity but offer high scalability29. To explore the performance impact of different platform architectures and underlying
infrastructure, simulators are a good tool for getting first results and building confidence in a particular design. To this end,
simulations must be customizable and extendable to adapt and model different platform designs quickly. Moreover, simulation
users should be able to model and configure various system parameters easily, which introduces the challenge of simulation

6 RAITH ET AL

configurability. Simulators should ship with a basic set of system assumptions so researchers can get started with baseline ex-
periments quickly, but also allow high configurability through custom performance models (see Section 3.2.5), parameterizable
infrastructure topologies (see Section 3.2.7), or adding completely custom simulation components.

2.1.2 Serverless function adaptation strategies
The platform architecture determines where the adaptation components reside and how they interact (e.g., centralized vs. hy-
brid). However, the three main adaptations (i.e., scaling, placement, routing) govern the placement of function instances and
backend services. We highlight their challenges in the edge-cloud continuum and briefly discuss implementations from the lit-
erature. This discussion highlights the complexity of designing function adaptations for serverless edge computing platforms,
from which there are simulation use cases researchers and practitioners alike can benefit from. We categorize the challenges
adaptation strategies face into application and infrastructure. Edge-cloud applications exhibit high amounts of spatio-temporal
workloads. Due to systems spanning multiple cities or countries, the workload is generated at different rates in different places.
Therefore, adaptation techniques must optimally place function instances in the edge-cloud continuum to process requests ef-
ficiently. Emerging application paradigms (e.g., Edge Intelligence) can have stringent requirements that platforms must fulfill.
Moreover, these applications also exhibit high heterogeneity in resource usage and complexity. Complex AI pipelines are a
prime example in which not only different hardware accelerators must take into account but also dynamic application flows can
change the path of execution (i.e., which functions must be executed)37,31. We can split the challenges from the heterogeneous
infrastructure into node-level and topology-level. Nodes offer different capabilities and capacities. Capabilities can be hardware
accelerators or other physical attachments exclusive to specific devices (e.g., cameras); therefore, adaptations must be aware of
correctly placing function instances that require capabilities. Multi-tenancy leads to performance interference, which can nega-
tively impact resource-constrained nodes. Further, some capabilities are exclusive to individual function instances (e.g., hardware
accelerators); therefore, adaptation techniques must carefully use those resources. The topology can consist of computing clus-
ters that have different capacities and capabilities. Due to heterogeneous networks, nodes have different network conditions
and can leave or enter the topology, causing instability. Simulations help understand the ability of function adaptation strate-
gies to handle these types of heterogeneity. Previous challenges have been extensively covered in literature but are fundamental
to orchestration strategies and serverless edge computing1,38. It becomes clear that implementing adaptation techniques in the
edge-cloud continuum is complex. Therefore, extensive evaluation of adaptation techniques is crucial for a successful deploy-
ment. However, it also introduces several challenges the simulation must address for a viable solution. First, the simulation must
incorporate well-known components in the core to evaluate adaptation techniques. These components include a scheduler, an
autoscaler, and load balancers. Simulation users should be able to extend and implement novel solutions for these components.
At the same time, the simulation should use a realistic domain model that maps simulation components to real-world ones. The
last challenge revolves around the scenarios and request patterns during simulations. As previously mentioned, spatio-temporal
context is important in edge-cloud systems (e.g., people moving around the city16), and simulations must be able to model this
aspect.

Our simulation can support the development of serverless edge platforms by allowing rapid evaluation of different designs that
propose individual solutions to these challenges. Therefore, we present simulation use cases that can help design and understand
platform designs.

2.2 Simulation use cases
Before discussing serverless edge computing platform simulations, we want to describe their use cases. Specifically, we want
to highlight four use cases that can facilitate the design process of serverless edge computing platforms based on the tasks and
their challenges identified in Section 2.1.1 and Section 2.1.2. Figure 3 shows each task’s corresponding simulation use case and
the simulation challenges it creates.

2.2.1 Resource planning
Resource planning determines the necessary physical hardware capacities to serve workloads adequately7. The simulation can
help understand platform providers and which architectures suit their infrastructure. They also can perform simulations in which
the infrastructure varies, which can support future investments in new equipment. In addition, simulations can also determine the

RAITH ET AL 7

Platform
Architecture

Application
Performance
Estimation

Resource

Planning

Serverless
Function

Adaptations

Co-simulation
driven adaptations

Serverless
Adapations
Evaluation

Tasks

Simulation

Use Cases

Simulation

Challenges

Programmable
Simulation
Scenarios

Configurable

Simulations

 Integration of
Serverless
Adaptations

Realistic Domain
Model

Spatio-Temporal
Context

Customizable and
Extendable
Simulations

Figure 3 Simulation use cases that facilitate implementation of tasks for serverless edge computing platforms.

highest workload the infrastructure can withstand. The simulation tool must support automated topology and workload creation
to perform many simulations to enable platform providers to identify possible interesting infrastructures.

2.2.2 Application performance estimation
Application performance estimation has various facets and not only includes the estimation of performance-related indicators
such as the response time of functions but can also include other factors such as Quality of Service and cost20. Customers can
get estimates for deploying their functions, while platform providers can use them to see whether different platform architec-
tures impact the cost in advance. The application performance estimation use case requires simulation users to freely adapt the
simulation to their specific use cases.

2.2.3 Serverless adaptation evaluation
It is challenging to operationalize adaptations in dynamic systems like the edge-cloud continuum, and requires continuous re-
evaluation and optimization at both design-time and run-time. Adaptation approaches range from threshold-based over heuristic
approaches to AI-driven strategies. Different ways of evaluating adaptation techniques exist. Testbeds and emulations help
evaluate adaptation strategies on realistic setups that remain on a small scale16,39. They offer realistic results but lack scale
and can be expensive. Additionally, results can be hard to reproduce because setups have many variables (e.g., OS version,
library versions). While efforts exist to make testbed evaluations reproducible14 (e.g., by streamlining the definition, execution,
and analysis of experiments), many factors depend on resource configuration. Emulations bridge the gap between real-world
behavior and scalability of simulations40. Both approaches rely on the available hardware and its configuration, making it hard
to reproduce results. Simulations, while highly dependent on the implementation (i.e., performance, resource models, etc.), offer
high reproducibility and can support large-scale scenarios. Researchers and system designers must be able to extend and develop
their own serverless function adaptation algorithms into the simulation. A simulation tool should offer baseline adaptations,
generic APIs to easily interface with the system (e.g., reasoning over the cluster topology, accessing simulated resource usage,
or triggering function deployment), and ways to capture spatio-temporal context to model things like clients moving through
the geo-distributed topology.

2.2.4 Co-simulation driven adaptations
The co-simulation-driven adaptation use case focuses on operationalizing adaptations in real-world platforms. Serverless func-
tion adaptations rely on thresholds, heuristic-based optimizations, or AI-driven strategies. These adaptation strategies rely on
parameter tuning, historical data, and possible optimization processes (e.g., AI training)41,42. Observing the system for changes
is crucial once an adaptation strategy has been deployed. These changes can come from the applications (e.g., new applications
or new requirements) or the environment (e.g., network saturation, node failure). In any case, the adaptation strategies must in-
corporate new circumstances during runtime. If adaptation strategies only interact with the real world and learn using historical
data, updated configurations might need to be updated when deployed. One of the key characteristics of the edge-cloud contin-
uum is its dynamic nature, and platforms have to autonomously and quickly adapt. In the best-case scenario, they can proactively
update strategies to possible future scenarios. The concept of co-simulation tackles this issue by using an underlying simulation

8 RAITH ET AL

engine to quickly update deployed adaptation techniques by simulating possible future scenarios43. Therefore, simulations must
use a realistic domain model to provide interoperability between the implementation in the simulation and the real-world system.

3 FAAS-SIM

Topology

Benchmark

User-defined

simulation setup

faas-sim

Workload

Traces

Skippy

scheduler

Galileo

Experiments

SimPy

Ether

Testbed

Simulation Results

Figure 4 faas-sim overview

faas-sim is a trace-driven stochastic discrete-event simulation framework built on SimPy24. It was initially developed to eval-
uate how well Skippy9, a generic container scheduling system based on the Kubernetes scheduling logic, could make trade-offs
between data and computation movement in edge computing infrastructure scenarios. To that end, faas-sim primarily simulates
serverless workload execution and network data transfer. Figure 4 shows an overview of simulation inputs, internal components,
and simulation outputs of faas-sim.

The default workload scheduling system is Skippy, which is highly customizable and models a wide range of placement
strategies but can also be replaced with a completely custom scheduler. To simulate workloads, faas-sim uses workload traces
from profiling experiments on real-world testbeds to simulate the execution time and resource usage of running serverless
workloads on different types of computing hardware. Our Galileo experiment framework14 can facilitate the execution and pre-
processing of experiments on a real-world testbed to generate traces for new functions and devices. For network simulation, it
uses a higher-level flow-based network simulation that is part of the Ether edge network topology synthesizer13.

All functionality faas-sim is implemented using Python and SimPy primitives. SimPy’s simulation engine is single-threaded
and uses a single event queue to model time progression in discrete steps. It leverages Python’s generator concept, allowing
users to implement simulation processes using the yield keyword to emit simulation events and programmatically advance the
simulation clock. faas-sim uses SimPy’s base mechanisms to facilitate the entire simulation and requires no additional extensions.
As shown in Figure 4, faas-sim and Ether use SimPy and, therefore, can interact with each other in the process simply by in-
memory communication using standard Python. A single Python process simulates the network and the serverless platform. A
Benchmark is the programmatic execution of a user-defined simulation scenario, which may include workload generation based
on specific patterns and allows users to plug in custom workloads or function simulators. The simulation result is a set of Pandas
data frames that include fine-grained workload traces and network simulation results that allow the calculation of system key
performance indicators such as average function execution, execution cost, resource usage, or network usage.

faas-sim provides pre-defined benchmarks, topologies, workload traces, and scheduling strategies, which users can individ-
ually customize. Specifically, faas-sim provides (a) traces from several common edge computing devices and representative
serverless workloads such as AI-based image recognition, numerical computations, or AI-based speech-to-text; (b) request gen-
erators that model real-world workload patterns; (c) common edge computing system topologies and cluster configurations
that are synthesized from real-world edge computing use cases13; (d) implementations of the container scheduling strategies
presented in previous works by the authors9,16 that can be used as baselines for new strategies.

We outline its conceptual model before explaining the implementation and architecture of faas-sim in Section 3.2.

RAITH ET AL 9

3.1 Conceptual model
The conceptual model of functions, deployments, and running replicas is shown in Figure 5. The API of the conceptual model
can be found in a dedicated code repository3. It serves as a unified API collection, allowing implementations for different
environments, such as faas-sim.

FunctionImage

faas.deploy(<name>)

Function

<name>

FunctionImageFunction Image

faas.invoke(<name>)

Function Request

FunctionContainer

Resource
Configuration

FunctionContainer

Resource
Configuration

Function
Container

Resource
Configuration

Scaling

Configuration

FunctionReplicaFunctionReplicaFunction Replica Node State

Capacity

LabelsFunction

Node

Design Time Run Time

Function Deployment

Figure 5 Conceptual model of functions and their deployment.

We split the conceptual model of functions into two parts: Design time and Run time. The Design Time includes Functions
and Function Images and gives simulation users the possibility to change the implementation of functions without redefining
Functions. It decouples the interface from the implementation and enables higher flexibility when defining functions.

• A Function is the highest level of abstraction and refers to some functionality identified by a name that can be invoked
with a Function Request. For example, a Function could be an object detector named “detect-objects” that takes an image
as input and returns the bounding boxes and labels of objects in the picture.

• A Function comprises several Function Image instances, one for each deployment platform. A Function Image is concep-
tually the code that implements a function on a specific deployment platform. For example, our “detect-objects” function
could have one version that uses the GPU and one that uses a TPU (an AI accelerator). The reason for this additional
abstraction is the way container platforms like Docker deal with multiple computing architectures. Docker images group
different CPU architectures via a manifest to a multi-arch image. A docker pull command will pull the correct image based
on the node’s architecture. However, there is no way to include additional platform aspects such as GPUs or TPUs. If two
container images exist for the same function, one that uses the CPU and one that uses the GPU, it may be ambiguous at
runtime which image to pull. Instead, we want to allow the placement component to decide which image to deploy for a
particular function.

• A Function Deployment is an instance of a Function with a concrete resource allocation and scaling policy configuration.
A deployment consists of multiple Function Container instances and said configurations.

• A Function Container is the runtime configuration of a Function Image. It has a specific resource configuration that
declares how many resources are allocated on a node when a particular replica of this Function Container is deployed.
In our running example, a GPU-based “object-detector” might require less CPU but more VRAM than the CPU-based
Function Image. A Function Replica is a concrete instantiation of a Function Container. It represents the actual running
function (like a Docker container).

• Each Function Replica has a Function Simulator object that models the function’s behavior for the simulation. Each
Function Replica has a Function Replica State that signals the replica’s current life cycle. The life cycles are inspired by
Kubernetes and range from being scheduled for placement to running and shutdown.

3https://github.com/edgerun/faas

10 RAITH ET AL

FaaS System

Deploy
Function

Invoke
Function

Remove
Function

Suspend
Function Scale Down Scale Up ...

Function Simulator

Environment

FaaS System
Function
Simulator
Factory

Scheduler

Benchmark

Resource State

Resource
Monitor

Cluster
Context

Metrics

Container
Registry

Flow FactoryBackground
Processes

Storage Index

Function Function

Function
Replica

Function Simulator

DeployStartup

Setup Invoke

Teardown

Deploy Startup

Setup Invoke

Teardown

Function
Replica

Function
Replica

Function
Replica

Function
Replica

Function
Replica

Topology

Function ContainerFunction
Container Function ContainerFunction Container

Function
Replica

Network Simulation

Figure 6 Main abstractions of faas-sim

• A machine capable of hosting function replicas is called Function Node. The Node State is a generic container for data
needed during simulation time, for example, storing the number of concurrent invocations to a particular replica to cal-
culate performance degradation. It also stores information that describes its CPU architecture, number of cores, memory
size, and allocatable resources.

3.2 faas-sim architecture
faas-sim’s architecture allows the modification and extension to accommodate different serverless edge computing platform
designs and execute various use cases. The architecture mainly consists of three abstractions: FaaS System, Environment, and
Function Simulator. Figure 6 shows the internals of them, whereas Environment contains object references (e.g., to the FaaS
System), while FaaS System and Function Simulator show methods to interact with them. The FaaS System acts as the central
entity that exposes methods to interact with the platform. For example, it allows users to deploy functions, remove, invoke,
or scale them up and down (also commonly referred to as scale out and scale in44). It manages a set of functions and the
associated Function Replica and acts as the serverless edge computing platform’s front end. The Environment contains references
to essential objects used throughout the simulation. These objects contain the main logic of the simulation and can be configured
and accessed via the Environment. For example, simulation users can replace the Scheduler (i.e., the placement component) by
simply pointing it to their implementation. Each Function Replica has a Function Simulator containing the function’s simulation
model. Based on that, we structure the remaining section by first outlining the FaaS System, followed by the Environment. Both
represent high-level components that encompass the simulation. Afterward, we detail how the Function Simulator works and
our approaches to model resources, performance, and network as well as faults.

3.2.1 FaaS System
The FaaS System abstraction is the high-level interface a simulation user interacts with. It is inspired by open-source FaaS
platforms (i.e., OpenFaaS25) and container orchestration services (i.e., Kubernetes45). The API of the FaaS System4 presents
the frontend of a serverless edge computing platform and lets simulation users deploy, remove, scale, and invoke Function
Deployments. The following shows an excerpt of available methods:

4The source code of this class is available under https://github.com/edgerun/faas. However, faas-sim provides an implementation called DefaultFaaS System

RAITH ET AL 11

• deploy: makes the function invokable and deploys the minimum number of Function Replica instances on the cluster. The
number of minimum running instances is configured via Scaling Configuration. FaaS System creates for each Function
Replica a new Function Simulator using the Function Simulator Factory. Each Function Replica gets a Function Node
assigned using the Scheduler. The Cluster Context is updated accordingly, and the FaaS System starts the Function Replica
life cycle.

• invoke: the Load Balancer selects the replica and simulates the function invocation by calling the invoke method of the
Function Replica’s Function Simulator.

• remove: removes the function from the platform and shuts down all running Function Replica instances, calling the
tearown method of each.

• discover: returns all running Function Replica instances that belong to the Function Deployment.
• scale_down: removes the specified number of running Function Replica instances, with respect to the minimum require-

ment. The current implementation first picks the most recently deployed Function Replica instances, which is Kubernetes’
default behavior44. However, simulation users also can pass a list of Function Replica to remove. This operation is
equivalent to the commonly used scale in operation44.

• scale_up: deploys the specified number of Function Replica instances but has to respect the maximum number specified
in the ScalingConfiguration. As with scale_down, the simulation user can also pass a list of Function Replica instances
to schedule, and the operation is commonly referred to as scale out 44.

• poll_available_replica: repeatedly waits and checks for running Function Replica instances of the Function
Deployment.

The API exposes additional lookup methods that we did not include above. The FaaS System manages functions using the
Environment and is responsible for invoking all life cycle phases of the Function Simulators. Using the Environment allows
simulation users to inject their Load Balancer, Scheduler, and other objects that the FaaS System uses.

3.2.2 Environment
The Environment is the central instance that stores object references used throughout the simulation. Figure 6 highlights most of
the objects currently in the Environment. This might change over time as the simulation is continuously updated to implement
and provide more features out of the box. However, we explain some of them in detail in the following and show which features
they enable.

• The Cluster Context keeps track of available Function Container images available and resources (i.e., CPU and memory)
on each node. This enables the simulation only to download images unavailable on the node and the Scheduler to check
if a node has enough resources.

• The Function Simulator Factory is a component that simulation users have to provide and determines which Function
Simulator instance is assigned to a given Function Replica upon creation.

• The Topology contains all nodes and the network graph and can be created using the external library Ether, which also
provides the network simulation. Ether implements a flow-based simulation that simulation users can transparently change
by modifying the Flow Factory, which determines the concrete type of network simulation.

• The Scheduler has to implement a schedule method, which takes a Function Replica and decides on which node it
should be placed. The default implementation of FaaS System uses a SimPy queue to process each requested Function
Replica sequentially and use the skippy-scheduler 9. However, simulation users can replace the Scheduler implementation
or modify the FaaS System implementation to suit their needs. For example, simulation users can change the default
monolithic scheduler architecture to decentralized.

• The Resource State keeps track of the resources across nodes and Function Replicas. This object acts as storage and offers
methods such as put and remove. The simulation user is responsible for using those methods, faas-sim does not restrict

12 RAITH ET AL

what kind of resources are stored. The Resource Monitor can measure resource usage repeatedly during the experiment by
fetching the resource usage for all running function replicas. This approach simulates a pull-based monitoring strategy, in
which a central controller is responsible for fetching the latest resource usage from all replicas, which mimics the behavior
of real-world monitoring frameworks, such as Prometheus5. However, users can also modify the Resource State to log
every put and remove action without using the monitor.

• The Metrics object is the central logging entity and stores everything in a table-like data structure for export at the end of
the experiment (e.g., as CSV file). The class offers some methods tied to the simulation, which faas-sim automatically logs
(i.e., the scheduling process), but simulation users can log arbitrary data. Simulation users can also implement the Metrics
class to support other storage mechanisms (e.g., SQL databases) to improve performance and keep memory usage low.

• Simulation users populate the Container Registry before starting the simulation with their Function Containers. Each
Function Container has a CPU architecture (i.e., arm64v8, arm32v7, amd64) and size of the image in bytes. The Container
Registry is a node in the Topology which enables the simulation of downloading the Function Container onto the node.

• The Background Processes object is a list that simulation users can populate. SimPy has a built-in concept of processes
running in the simulation’s background. The list of processes is automatically started at the beginning of each simulation
and allows users to run processes continuously. For example, the Resource Monitor, which periodically fetches the resource
usage of each Function Replica and node, is a background process. Another critical component in the simulation of
serverless edge computing is the Autoscaler. faas-sim includes a variety of Autoscalers that can be included in the list of
Background Processes. Each Autoscaler implements a run method that repeatedly observes the platform state and invokes
the FaaS System’s scale_up and scale_down methods.

• The last concept we include in faas-sim is the Storage Index, which enables users to model object storages that are pop-
ular in serverless computing and are mainly used to store data that functions have processed. Therefore, faas-sim can
realistically simulate the network transfer between Function Replicas and storage nodes.

Having access to all important aspects of the simulation (e.g., FaaS System) enables the implementation of Function Simulators
that act as Load Balancer, Autoscaler, Scheduler and arbitrary components.

Before describing our evaluation, we want to define the Simulation and input parameters (i.e., Topology and Benchmark) in
more detail.

3.2.3 Trace-driven function simulators
The main goal of faas-sim is to determine the function execution time (FET) and resource usage of running workloads on
particular nodes. faas-sim is trace-driven, which means that users need to provide measurements, or estimations, from real-world
experiments to feed the simulation. We explain this in more detail in Section 3.2.4. In this section, we present the Function
Simulator abstraction, which allows users to simulate various stages of a function that ultimately determine the FET and resource
usage.

While we ship a set of functions with faas-sim, we also enable simulation users to profile new functions on their hardware
using Galileo experiments14. In the following, we focus on our profiling approach but want to emphasize here the flexibility of
our simulation. As we mentioned, the simulation does not make any assumptions about resource usage, and users must inject
their traces. Further, faas-sim also does not have an integrated resource model, and simulation users must implement their own.
However, faas-sim offers functionality to implement a resource model as we describe in Section 3.2.2. Figure 7 shows the
Function Replica life cycle phases and denotes for each one the data we must store to enable the trace-driven simulation. For
example, we calculate the resource usage of a single function invocation and use this in the simulation. We also use the duration
for each phase to simulate it accurately. The phases, depicted in Figure 7, correspond to the phases that the Function Simulator
offers to implement.

The Function Simulator is the core of faas-sim and implements the behavior of a function. Deploying a Function Replica
consists of the following life cycle phases. The Function Replica is deployed on the node (e.g., by pulling the container image
if it is not present), and starts the Function Replica. Afterward, the replica can execute some setup code and then is ready
for invocation. In the end, the replica is tore down. To simulate this life cycle on a node, a FunctionSimulator class must

5https://prometheus.io/

RAITH ET AL 13

Replica image pulled
on Node

Time

Replica Startup

Network Simulation:

Size of Image

Function Invocation

Trace:

Duration (Function Execution Time)
Resource Usage

CPU
GPU
Memory
Block I/O

Network simulation:
Request Body
Response Body

Function TeardownFunction Setup

Trace:

Duration
Resource

Usage

Trace:

Duration

Trace:

Duration
Resource

Usage

Figure 7 Trace-driven analysis process

be implemented with the following methods. Each method yields SimPy simulation events, which enables simulation users to
implement arbitrary complex simulation models of functions.

• deploy: deploys the Function Replica on the node (e.g., by pulling the container)
• startup: starts the Function Replica

• setup: executes any setup code of the Function Replica

• invoke: simulates the invocation of the Function Replica

• teardown: cleans up and stops the running Function Replica

Figure 8 shows the life cycle phases and puts the real-world execution and function code next to the simulation code. It also
depicts the different states the replica is in during the simulation, from starting to shutting down. The deployed function offers
AI inference and initially loads an AI model into memory, which is kept in memory to speed up inference.

Before going into details, we want to highlight three things: (1) in some phases docker commands are shown. Typically,
the underlying orchestration service executes these commands, and we include them only to simplify the explanation. (2) the
simulation is not tied to Docker or container virtualization techniques and can model the behavior of other technologies. (3) this
example highlights many aspects of the function execution model, which are all optional,i.e., simulation users can decide which
of them they include.

In the deploy phase, the docker pull command downloads the function image from the container registry. The simulation
model simulates a network download using Ether, which downloads the Docker image size from the container registry if it is
not already on the node.

The yield statement enables SimPy to track time spent and includes the simulated download time from Ether. Afterward, the
docker run command starts the function, which we simulate using the time taken from the traces. The env.timeout call lets
the simulation wait. SimPy has no built-in concept of units, leaving this open to the simulation users. Our traces are in seconds;
therefore, startup_delay is also in seconds. Next, the simulation includes the container’s resources after the startup (e.g., CPU
usage, memory). The delay in starting the function and the resource usage comes from the trace analysis the simulation users
must provide. The Function Replica transitioned in the meantime to the starting state and began the setup phase. The Function
Replica only consumes the base resources. As we describe in Section 3.2.2, faas-sim is not built around a specific resource
model but offers a resource state object that acts as storage. For example, we can measure the function’s idle CPU usage, store it,
and afterward remove it. Further, the Function Simulator methods accept (among other arguments not shown for conciseness)
an Environment (i.e., env) argument, which gives access to the resource state. In the setup life cycle phase, the container loads
an AI model into memory. The simulation models the delay of loading the model and claims resources consumed by the AI
model. After the setup phase, the replica is running and can be invoked. In the real world, the function invokes the AI model
with the request (e.g., an image). However, in the simulation, the Function Simulator first claims resources that are used due to

14 RAITH ET AL

Teardown

Real-world Function
def shutdown():

 # cleanup resources

self.cleanup()

 docker stop function

Function Simulator
def teardown(env):

 # simulate clean up

time_to_cleanup = ...
yield env.timeout(time_to_cleanup)
self.release_model_resources()

self.release_base_resources()

Function Replica

Running Shutdown

Invoke

Real-world Function
def invoke(req):

 # invoke model on request

 response = self.model.invoke(req)

 return response

Function Simulator
def invoke(req, env):

 # simulate resource usage

 claim_resources(env, req)

 # simulate function execution time

 fet = ...

 yield env.timeout(fet)

 # release resources

 release_resources(env, req)

Setup

Real-world Function

def setup():

 # load model

self.model = load_model()

Function Simulator

def setup(env):

 # simulate loading model

load_model_delay = ...
yield env.timeout(load_model_delay)
claim resources consumped by model
load_resources = ...
claim_resources(env, load_resources)

Function Replica

Starting Running

Startup

Real-world Function

docker run function

Function Simulator

def startup(env):

 # simulate start up

startup_delay = ...
yield env.timeout(startup_delay)

claim resources consumped by replica
base_resources = ...
claim_resources(env, base_resources)

Function Replica

Image Starting

Deploy

Real-world Function

docker pull function

Function Simulator

def deploy(env):

 # simulate network download

 yield from self.docker_pull_image()

Function Replica

 Downloaded Image

download

starting

setup

Resource Usage: Base, Model

Resource Usage: Base

Resource Usage: Base, Model, Invocation

Function Replica

Running

teardown

Resource Usage: <empty>

Container
Registry

Figure 8 Life cycle phases of AI inference function based on OpenFaaS’ HTTP of-watchdog.

the inference process and simulates the inference by waiting for the time we derived from the traces and afterward releases the
resources. While this example is kept simplistic on purpose, faas-sim users can implement sophisticated simulations that model
more complex aspects of a function. For example, the execution duration can depend on the input (e.g., small vs. large input),
and simultaneously, simulated resource consumption can also rely on the input. To achieve this, a formula (either using profiled
traces or ML models) is needed that can estimate the execution time. In contrast, the parameters of this formula can depend on
the input size, resource usage based on the input, etc. This allows the modeling of functions that use different resources (e.g.,

RAITH ET AL 15

I/O, CPU) based on the input and other factors. The resource modeling approach of faas-sim is explained in Section 3.2.5, and
we later show how it can be used to implement complex multi-tenant scenarios in Section 3.2.6 and Section 4.1.1.

Eventually, we can stop the function replica. In the real world, we call docker stop, and the container receives a signal to
shut down (i.e., leads to the invocation of shutdown). The Function Simulator’s teardown method is called, and it waits for a
specific time, simulating the clean-up process, and then releases all resources.

The Function Simulator is flexible, and simulation users can adapt it to their needs. We show in Section 4.4 how they can
mimic the behavior of OpenFaaS functions.

3.2.4 Trace-driven performance modeling
As mentioned, faas-sim is trace-driven and relies on the results of basic profiling benchmarks that faas-sim then uses to model
more complex behavior. Existing simulation systems for edge and cloud computing, such as CloudSim46 and its numerous
extensions23,22, use a performance model based on discrete values of CPU instructions. The execution duration is calculated
using the number of CPU instructions of a workload and the CPU’s instruction rate in instructions per second (IPS)47. This
approach has several limitations. Depending on the computer architecture, not every instruction takes up the same amount of
CPU time, meaning that the IPS is not static for the CPU but depends on the mix of instructions. Further, the CPU speed varies
significantly in the edge-cloud continuum48, and functions do not only rely on the CPU speed but also on other resources, such
as I/O. Additional factors determine task execution duration on a CPU, including L1 and L2 cache sizes or I/O access density.
Ultimately, even these approaches have to estimate or profile the number of instructions of a function invocation and the CPU,
similar to our profiling experiments. The effort of determining these data is equivalent to running a complete set of profiling
experiments, meaning there is no benefit over a trace-driven model.

In Section 3.2.3, we introduced the Function Simulator and have shown which traces the simulation can use during the simu-
lation. The Invoke step of our example shown in Figure 8 has a placeholder for determining the function execution time (FET),
which we want to elaborate on. Generally, we simulate FET using an oracle that determines the FET based on the workload,
the node executing the workload, and the current resource utilization. We model performance and performance degradation by
fitting functions on the distribution of workload traces for a particular workload and compute device. During simulation time,
the oracle samples from the fitted distributions to determine the FET, and the simulation system records how many requests are
being executed in parallel.

While faas-sim is not tied to a specific performance model to determine FET and resource usage, we want to show and evaluate
the model that faas-sim ships with. To that end, we first explain how we model resources of cluster nodes, and then how we use
stochastic performance models to simulate performance degradation and multi-tenancy.

3.2.5 Resource modeling
Our resource model approach is based on traces gathered during workload and device profiling experiments. Similar to our
performance model, which is centered around the execution time of one function invocation, the resource model allows us to
describe the resource usage of one function invocation. Based on the traces, we calculate a resource vector representing the
utilization of the following resources:

• 𝑢𝑐𝑝𝑢: the CPU utilization,
• 𝑢𝑖𝑜: the block I/O in bytes/sec,
• 𝑢𝑛𝑒𝑡: the network I/O in bytes/sec,
• 𝑢𝑔𝑝𝑢: the GPU utilization (if available), and
• 𝑢𝑟𝑎𝑚: the RAM usage

Each resource represents the mean usage for one function invocation. We are using telemd6, a lightweight telemetry daemon
that continuously collects and publishes data. Telemd enables fine-grained profiling on the container level (i.e., CPU, network &
block I/O, and memory). The GPU utilization is measured on the system level, and measures must be taken to avoid interference.
Details can be found in49. The resource vector can be subsequently claimed during Invoke step of the function simulator. Adding

6https://github.com/edgerun/telemd/

16 RAITH ET AL

0.40 0.41 0.42 0.43 0.44
FET (seconds)

0

20

40

60

80

Pr
ob

ab
ilit

y
de

ns
ity

median = 0.41
lognorm(= 4.16, = 0.61)

(a)

1 2 4 6 8 10 12 14 16
concurrent requests

0.0

0.5

1.0

1.5

FE
T

(s
ec

on
ds

)

median
0.068x + 0.247

(b)

Figure 9 Example function execution times (FET) of running an SMT function. (a) Distribution with single request 𝑛 = 100,
(b) performance degradation with increasing number of concurrent requests

the resources during each function invocation facilitates estimating performance degradation in multi-tenancy scenarios, as
shown in the following section.

3.2.6 Stochastic performance models
Stochastic performance modeling embraces the fact that there is variance in the execution duration of a task, even if the conditions
appear equivalent. When performance degrades because of concurrent execution of tasks and resource contention, not only
does the function execution duration increase, but the variance also increases. Modeling this behavior is particularly relevant
for systems that need to balance load between workers. There are two distinct scenarios: single-tenant performance degradation
and multi-tenant performance degradation. In the single-tenant case, only one type of workload is executed on a node, and the
performance degradation can be formulated simply as a function of the number of concurrently executing processes. In the
multi-tenant case, multiple workloads may require heterogeneous amounts of resources, which is much harder to model.
Single-tenant performance degradation
To illustrate how faas-sim enables this, we present an example from faas-sim that simulates the execution of Satisfiability Modulo
Theories (SMT) workloads.

Figure 9a shows the traces and fitted probability density of the function execution from an experiment in which we profiled
a particular SMT solver on an edge device. It shows the particular parameters for the fitted log-normal distribution. Our per-
formance modeling approach samples during simulation time from the log-normal distribution for each invocation. Figure 9b
shows how the FET distribution changes with increasing concurrent requests due to resource contention. The dotted line shows
a linear regression fitted over the medians of the distribution.

Based on these observations, we can generalize a simulation model as follows. During simulation time, we want to estimate
the FET for the workload (serverless function) 𝑓 on node 𝑛 given the current number of concurrent requests 𝑟. The parameters
are available in the simulation system as part of the environment (see Section 3.2.2). First, we fit a linear regression to estimate
the median FET based on the function and the current number of served requests. Then, we add noise sampled from the log-
normal distribution we fitted on the experiment with a single workload. We can then define the FET as a function 𝑡𝑓,𝑛 of 𝑟, where
𝑓 is the SMT function, and 𝑛 is the particular edge device of the profiling experiment. For the example given in Figure 9, the
concrete parameters would be defined as:

𝑡smt,edge(𝑟) = 0.068 ⋅ 𝑟 + 0.247 +𝑋 (1)
Where X is the log-normal distributed noise: 𝑋 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(−4.16, 0.61). This yields a simple but reasonably accurate

simulation model that can be plugged into a faas-sim Function Simulator. In previous work where we used the same stochastic
modeling technique for simulating the execution of AI workflows, we have shown that this approach leads to very good results50.
Multi-tenant performance degradation
Besides the single-tenancy case, which is based on fitting simple parameterized distributions, we also explored an ML-based
approach to predict performance degradation occurring in multi-tenancy scenarios49. Our approach is based on the previously

RAITH ET AL 17

described resource vectors we assume to have for each deployed function. We integrate this model as follows. At each function
invocation, we sample the execution duration based on the stochastic performance model and collect the current resource usage
afterward. The resource usage is used as input to invoke our ML model, which returns the factor that worsens the performance.
For the final execution duration, we multiply the performance degradation factor by the initially sampled duration. The input
is based on the function requests being executed at the moment and base resource usage as well as hardware accelerators (e.g.,
GPU). The single-column vector has a fixed length of 34. It contains the sum, mean, standard deviation, minimum, maximum,
25𝑡ℎ, 75𝑡ℎ percentile of CPU, GPU, network, and block I/O usage, mean memory usage, and the number of running containers.
The difficulty of this approach lies in training a good model, which we describe in more detail and present results in Section 4.1.1.

3.2.7 Network simulation
A network simulation is fundamental to simulating interactions between nodes and workloads within a serverless system. Net-
work topology, capacity, and usage significantly impact the performance of serverless systems, so having a reasonable simulation
model for networking is essential. Examples of interactions in our model where the impact of networking is high include:

• downloading a Function Container onto a cluster node.
• transferring data from storage nodes to a Function Replica.
• transferring data between functions (e.g., request and response data).

Our network simulation is based on the network model of Ether13, which is more high-level than packet-level simulators such
as ns-351 or OPNET52. These simulators precisely model the low-level interaction between network protocols and networking
hardware, which differs from our goal. Instead, our simulator implements a high-level network model on top of topologies based
around flows, representing data transfers between nodes through several links. This way, we trade off fidelity for simulation
performance.

The conceptual model of Ether is simple and has three core concepts that are relevant to the network simulation: (a) node: a
computing or storage devices within the network; (b) link: anything that facilitates a connection between nodes in the network
(e.g., a network card, a WiFi access point, or a mobile network uplink), which has an associated data rate capacity (bandwidth);
(c) topology: a graph that models nodes and links as vertices and connections as edges that can hold QoS attributes such as
latency.

Simulating data transfer between nodes involves opening a flow through several connected networks links, i.e., a route. This is
a very common model for simulating and reasoning over networks53,54,55. Our network simulation implements a simple shortest-
path routing through the topology and fair link bandwidth allocation across flows. A flow can be considered a stream of data
between two nodes that uses the bandwidth of links. Each link has a certain amount of bandwidth, and we implement fair
bandwidth allocation across flows. When a data transfer between node 𝑛1 and 𝑛2 is simulated, a route is computed with a shortest
path algorithm. The route contains all links along that path between 𝑛1 and 𝑛2. All existing flows that use links along the route
are interrupted, and their bandwidth is reallocated according to the fair bandwidth allocation scheme. A flow will only allocate
as much bandwidth on links as the lowest bandwidth a link across the route (in other words, the bottleneck of the topology) can
provide. For calculating the data transfer duration of the flow, we use the following model:

duration(flow) = round trip time ⋅ 1.5 +
(bytes to transfer

goodput
)

(2)
In other words, the time to establish the TCP connection (which is bound by the link latency and multiplied by 1.5 to reflect

the TCP handshake procedure), plus the ideal time to transfer the given amount of bytes. The round trip time is calculated by
summing up the latency values of all connections between links along the route. The goodput data rate, i.e., the application-level
throughput of communication, is estimated from the allocatable bandwidth across the route in bytes per second, multiplied by
a magic number of 0.97 that captures roughly the TCP protocol overhead.

goodput(flow) = 0.97 ⋅ minlink∈route(𝑚𝑎𝑥𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑎𝑏𝑙𝑒𝑃 𝑒𝑟𝐹 𝑙𝑜𝑤(link)) (3)
The function𝑚𝑎𝑥𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑎𝑏𝑙𝑒𝑃 𝑒𝑟𝐹 𝑙𝑜𝑤 implements bandwidth allocation based on a max-min fairness notion53, and the outer

call to 𝑚𝑖𝑛 finds the bottleneck in the route. The details of our algorithm implementation can be found in our code repositories 7.

7https://github.com/edgerun/ether/blob/master/ether/core.py

https://github.com/edgerun/ether/blob/master/ether/core.py

18 RAITH ET AL

The choice has no particular significance, but it is known that TCP congestion control converges to a balanced allocation56.
When simulating edge computing systems, more research is needed to determine the accuracy of different bandwidth-sharing
models, such as proportional fairness54.
Limitations
Although the simulation model is straightforward, its accuracy in the basic scenarios we have investigated is comparable to that
of packet-level simulators like ns-3, as shown in our evaluation of the network simulation accuracy in Section 4.3. However, the
simplicity of the model comes with some limitations. TCP congestion control using additive-increase/multiplicative-decrease
(AIMD) is known to converge to an equal allocation of a contested link between flows56, our max-min fairness allocation does
not model the process of converging to that allocation, which takes time and may affect the result of individual flow simulations.
Also, TCP is known to have degrading performance behavior when there are many parallel flows57, which still needs to be
explicitly handled in the current model. Moreover, the goodput of a flow can be negatively affected by TCP packet loss, which is
not simulated and likely harder to implement since we do not simulate on the packet level. It is currently unclear to us when and
how such behavior would impact the conclusions drawn from simulation results, given that network conditions are often only
one aspect of the systems that faas-sim targets. For example, in the evaluation of Skippy9, an optimizing container scheduler for
geo-distributed scenarios, the network simulation played a significant role in identifying network bottlenecks. However, aspects
such as the workload execution time or computational resource contention had a similar or higher impact, such that the additional
fidelity of modeling TCP loss rate, which Morris57 showed can range from 1%-5% with 40-140 active TCP flows, would have
no significant impact on the overall result of the evaluation. To understand this more and to be able to generalize, we invite the
community to contribute baseline scenarios that can provide more evidence for whether this type of fine-grained simulation is
needed for edge system evaluations.

3.2.8 Fault modeling
Faas-sim supports out of the box two common classes of faults in distributed systems, specifically in the edge-cloud continuum:
network degradation and replica failure. The default network simulation configuration throws an error when the bandwidth of
a link is under a certain threshold. This simulates the exhaustion of network connections that can quickly saturate in resource-
constrained environments (e.g., a Raspberry Pi 3 has a 100 Mbit/s bandwidth). Moreover, users can implement methods that
randomly shut down functions or make nodes unavailable. The flexible Function Simulators can provide more fine-grained
faults, such as resource exhaustion during invocation. For example, a function invocation might consume too much memory and
cause the function and possibly others on the same node to shut down abruptly.

3.3 User-defined simulation scenarios
A simulation encapsulates the configuration and the runtime state of a simulation. It requires two inputs: a Topology and a
Benchmark which can be built using request generators.

3.3.1 Topology
The simulation takes an Ether 13 topology as an input parameter. This enables users to generate network topologies in code
and synthesize plausible infrastructures. As we described in Section 3.2.7, Ether’s fundamental concepts, which are tightly
integrated into faas-sim, are nodes, links, cells, and the topology. A node represents a compute or storage device, and users
can set the CPU and memory resources and label it to expose any additional capabilities (e.g., hardware accelerators). Links
represent connections between nodes, such as access points, routers, and switches. Each link can be configured to have a specific
data rate capacity. Cells represent a group of nodes, links, or other cells and help users to compose larger computing clusters.
Topologies represent these components’ graph representations and connect the nodes, cells, and links.

faas-sim provides several Ether topologies for common edge computing scenarios out of the box. These include: (a) an
Industrial IoT scenario with distributed premises and shared cloud infrastructure, (b) an urban sensing scenario based on data
from the Array of Things project58 that connects distributed IoT nodes through mobile Internet, (c) a multi-region cloud scenario
with several cloud data centers connected via an Internet backbone. Users can use Ether to generate topologies for their scenarios,
but the pre-defined scenarios can serve as a baseline. These topologies have been used to successfully evaluate edge computing
resource management algorithms, as shown in Section 4.

RAITH ET AL 19

3.3.2 Benchmark
The Benchmark is a container for simulation parameters and the workload configuration to model a particular experiment sce-
nario. Such scenarios could be: (1) generate 𝑁 sequential requests for function 𝑓 ; (2) for 𝑡 number of hours in simulation time,
generate requests for functions 𝑓1, 𝑓2, and 𝑓3 based on random workload patterns; or (3) for 𝑡 number of days in simulation
time, create 𝑢 number of workload generators (representing users in the scenario generating requests) that generate requests for
function 𝑓 in a sine-based workload pattern. faas-sim provides several such scenarios as examples but will ultimately have to
be provided by the user depending on their use case and evaluation scenarios.

Specifically, the Benchmark is a SimPy process implemented in Python that prepares the evaluation environment by preparing
the different workload types and then generates requests based on some logic. Simulation users must implement two methods:
setup and run. The setup method has access to the Environment, and users can initialize objects, such as the container registry
(i.e., register available images). The run method is invoked to bootstrap the actual simulation scenario and start the workloads.
Simulation users can also deploy Function Deployments at this stage and use our request generators to produce workload on the
deployed functions.

3.3.3 Request generators
faas-sim allows programmable workload generators to produce realistic invocation patterns. These generators are located in the
request-generator project on GitHub8. They are composed of an arrival process and a workload pattern. The arrival process
determines the distribution from which the inter-arrival times, i.e., Δ𝑡 between requests, are drawn. The request-generator offers
as of now: constant/static and expovariate processes. The workload pattern determines the average target requests per second
(rps) pattern at a given time. Several workload patterns are supported, such as constant, sine, and random walk. Simulation users
can combine the arrival process and workload patterns freely. These tools allow the modeling and creation of dynamic workload
patterns and can simulate realistic ones. Moreover, faas-sim also supports files that contain a list of inter-arrival times. This
enables users to export workloads and replay them, increasing the reproducibility of simulations and allowing users to model
workloads without our tool. Specifically, simulation users can take existing datasets59 or synthesize their own60 and pre-process
them into a list of inter-arrival times our simulator supports.

Figure 10 depicts possible combinations of arrival processes and workload patterns.

Figure 10 Generating workloads by combining inter-arrival distributions with workload patterns, taken from61.

The first row illustrates the combination of the expovariate interarrival distribution and the sinusoidal workload pattern. The
orange line should match the workload pattern and display a moving average of rps. The left column shows how the constant
distribution replicates the workload pattern, and the right column shows how the constant workload pattern with a expovariate
distribution models a static workload pattern with randomized intervals. To model highly fluctuating workloads, the bottom
right combines the Gaussian random walk workload pattern with the expovariate distribution.

8https://github.com/edgerun/request-generator/

20 RAITH ET AL

2 4 6 8

Nvidia TX2

0 2 4

Nvidia Xavier NX

2 4

RockPi

Performance Degradation
1 2 3

XeonGpu

(a) Performance Degradation on edge devices

All GA Skippy Vanilla
0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
e
rf
o
rm

a
n
ce

d
e
g
ra
d
a
ti
o
n

Cloud

All GA Skippy Vanilla
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Hybrid

All GA Skippy Vanilla
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Edge Cloudlet

(b) Performance Degradation on edge devices

Figure 11 Performance degradation in real-world experiments and in simulation.

4 EVALUATION

The evaluation consists of five parts: We showcase a selection of published works that have used faas-sim and highlight their
results. This shows the ability of faas-sim to be used for the use cases shown in Section 2 and addresses the challenges introduced
in Section 1. Moreover, based on our resource and performance modeling approaches, we highlight functions profiled included
in faas-sim that can bootstrap scenarios without additional experiments in Section 4.2. The high heterogeneity in terms of
performance duration of the traces emphasizes the necessity for stochastic models, as presented in Section 3.2.6. Section 4.3
presents our network simulation experiments comparing results from Ether with a testbed and ns-362. Section 4.4 shows the
flexibility of our Function Simulator approach. Lastly, Section 4.5 presents experimental results that the resource usage of
faas-sim for different scenarios.

4.1 Simulation use cases
This section showcases selected works using faas-sim for the use cases outlined in Section 2.2. We highlight their approaches
and results and reflect on the introduced challenges. These works range from ML-based multi-tenancy performance models,
serverless adaptations (including the evaluation aspects), simulation of different infrastructure topologies, and simulation-driven
adaptations. This use-case-based evaluation also shows that faas-sim tackles the simulation challenges.

4.1.1 Application performance estimation
In49, we introduced a novel performance degradation prediction approach that estimates the performance degradation factor
based on the current resource usage. This approach models the impact multi-tenancy has on performance. The ML-based ap-
proach was developed by executing various functions (e.g., AI inference, CPU heavy) on various devices (e.g., Raspberry Pi 4
to an Intel NUC).

Figure 11a shows the results of these experiments as boxplots where the performance degradation is the factor of increase in
contrast to the mean execution duration. Due to hardware limitations, not all functions were executed on all devices (e.g., on
the Rock Pi only a few can run). Besides the performance degradation, we also measured the resource usage to create for each
function its resource vector. The resource vectors are, in turn, used to pre-process the ML model’s input. The input is a vector
describing the current resource usage based on the function requests being executed at the moment and base resource usage as
well as hardware accelerators (e.g., GPU). The single-column vector has a fixed length of 34. It contains the sum, mean, standard
deviation, minimum, maximum, 25𝑡ℎ, 75𝑡ℎ percentile of CPU, GPU, network, and block I/O usage, mean memory usage, and
the number of running containers. During the simulation, we determine which functions are currently being executed on each
node and use the associated resource vector we presented in Section 3.2.5 to form the input. We used TPOT63, an AutoML tool,
to find a suitable ML pipeline, and validation results have shown good performance (i.e., the mean absolute error ranged from
0.02 to 0.09).

The final pipeline had the following configuration, and our approach fits each unique device with its own ML model:

RAITH ET AL 21

1 ExtraTreesRegressor(CombineDFs(DecisionTreeRegressor(Binarizer(AdaBoostRegressor(
2 input_matrix , learning_rate =0.001 , loss=square , n_estimators =100), threshold =1.0) , max_depth =10,

min_samples_leaf =17, min_samples_split =9), PCA(input_matrix , iterated_power =4, svd_solver=randomized)),
bootstrap=False , max_features =0.8500000000000001 , min_samples_leaf =1, min_samples_split =4, n_estimators =100)

The model’s accuracy shows that our resource model can be used to integrate sophisticated approaches to estimate the impact
of multi-tenancy. Thus, it allows users to get reasonable estimates for their application performance through simulations and
shows that faas-sim can support high configurability simulations by extending the core resource model. A limitation of this
work is that it has to be investigated how well it generalizes for new, unseen functions as the training and evaluation focused on
a limited set of functions. Moreover, we trained an individual model for each device, thus increasing the effort to include new
devices as they would need to be profiled accordingly.

4.1.2 Evaluating serverless adaptation approaches
Evaluating serverless adaptation approaches is challenging on real-world testbeds, given the complexity of experiments neces-
sary to draw generalized conclusions about the performance of such approaches. Simulation tools like faas-sim that can easily
generate variations of computing infrastructure and workload patterns allow much more meaningful evaluations. The simula-
tion should be able to mimic the spatio-temporal context of real-world applications. That is the distance between the request
origin and the execution location and the varying request patterns over time. faas-sim has been used to evaluate different adap-
tation approaches, ranging from optimization-driven approaches that avoid performance interference and decrease performance
degradation due to multi-tenancy49 to the evaluation of load balancer placement64. Scheduling of data-intensive applications9.
Specifically, the results of49 used the performance degradation caused by multi-tenancy as key performance indicator, as shown
in Figure 11b. The figure shows different function adaptation approaches (i.e., All, GA, Skippy, and Vanilla) representing dif-
ferent scheduler configurations. Using the performance degradation model, simulation users can estimate the efficacy of their
adaptation strategy to avoid this in multi-tenancy situations. In64, we have evaluated different load balancer placements, thus
focusing on the spatio-temporal context caused by varying request patterns arriving at the load balancer instances. We imple-
mented a scheduling and scaling strategy to spawn load balancer instances dynamically and evaluated the function execution
time with different configurations.

To summarize, faas-sim can evaluate different serverless adaptation strategies and, in combination with Ether’s topologies,
considers spatio-temporal context. This is normally very difficult given the many parameters of the infrastructure and the en-
vironment that would have to be tuned to draw generalizable conclusions from experiments on real-world testbeds. Therefore,
updating the models is advisable when adding new devices or functions.

4.1.3 Resource planning
Resource planning helps platform designers and providers estimate their system’s ability to handle different applications on a
given infrastructure. It lets them plan before buying expensive hardware by simulating scenarios with varying hardware con-
figurations. faas-sim has been used to conduct simulations on various infrastructure configurations that ranged from the cloud,
industrial IoT, and Smart City infrastructures9, and on a range of infrastructures with different compositions of available hard-
ware ranging from small factor computers to cloud-like servers49. In both works, faas-sim was able to estimate the impact
different hardware configurations had on the platform, and through the programmable scenario definition, various topologies
were automatically created. Specifically in49, the authors extended the simulation and Ether by generating random topologies
based on probabilities (i.e., users can specify how many nodes have an Intel Xeon or Intel i5 CPU equipped, etc.). Moreover, in9,
we presented an initial evaluation of the Skippy scheduling system that is also used by default in faas-sim (see Section 3). Skippy
introduces several soft constraints (scheduling functions) that are designed to help the scheduler make better container place-
ment decisions in edge computing scenarios. Using faas-sim, we were able to show that the placements that Skippy makes lead
to more scalable application deployments across different scenarios, indicated by the increased data throughput of the deployed
application in Figure 12a.

4.1.4 Co-simulation driven adaptations
In9, we tackled the challenges schedulers in edge-cloud container systems face when deploying data-intensive workloads. Specif-
ically, AI workloads were used as an example that must pull large AI models and training data from remote storage services over
the network. These storage services are scattered across the system’s infrastructure, and we have shown that pushing function

22 RAITH ET AL

(a) Data throughput of different approaches and across different infrastructures (b) Importance of Soft Constraints

Device Arch CPU RAM Accelerator Storage

Xeon (GPU) x86 4 x Core Xeon E-2224 @ 3.44 GHz 8 GB Turing GPU - 6 GB SSD
Intel NUC x86 4 x Intel i5 @ 2.2 GHz 16 GB N/A NVME
RPi 3 arm32 4 x Cortex-A53 @ 1.4 GHz 1 GB N/A SD Card
RPi 4 arm32 4 x Cortex-A72 @ 1.5 GHz 1 GB N/A SD Card
RockPi aarch64 2 x Cortex-A72, 4 x Cortex-A53 2 GB N/A SD Card
Coral DevBoard aarch64 4 x Cortex-A53 1 GB Google Edge TPU eMMC
Jetson TX2 aarch64 4 x Cortex-A57 @ 2 Ghz 8 GB 256-core Pascal GPU eMMC
Jetson Nano aarch64 4 x Cortex-A57 @ 1.43 GHz 4 GB 128-core Maxwell GPU SD Card
Jetson NX aarch64 6 x Nvidia Carmel @ 1.9 GHz 8 GB 384-core Volta GPU

48 tensor cores SD Card

Table 1 Device type specifications

Function Jetson NX Jetson Nano Jetson TX2 Xeon (GPU) Intel NUC RockPi 4 RPi 4
Fio 13.77 19.64 4.31 1.14 1.12 21.99 27.81
Mobilenet Inf. TFlite 0.33 0.45 0.33 0.28 0.28 0.52 1.28
Python Pi 0.83 0.75 0.55 71.59 0.25 0.92 23.59
Resnet50 Inf. CPU 0.51 0.93 0.74 0.17 0.16 1.38 2.91
Resnet50 Inf. GPU 0.39 0.73 0.39 0.13 × × ×
Resnet50 Preprocessing 6.08 7.95 6.39 2.66 2.53 7.65 19.5
Resnet50 Train CPU × × × × 197.45 × ×
Resnet50 Train GPU 142.0 847.17 228.12 32.13 × × ×
Speech Inf. GPU 1.65 4.54 3.31 0.75 × × ×
Speech Inf. TFlite 2.68 3.89 3.44 1.08 1.06 3.82 6.75
TF GPU 1.17 0.62 1.89 0.37 × × ×

Table 2 Function traces included in faas-sim. Shows the mean FET in seconds over 100 requests.

execution closer to the data can alleviate network pressure and result in faster execution. We introduced weighted scheduling soft
constraints for which we ran simulations to find optimal weights and could apply the weights obtained from the simulation in
their scheduler. A good assignment of weights depends on the desired optimization goal and the cluster topology. We used faas-
sim within an optimization algorithm to find a weight assignment that makes good trade-offs. Figure 12b shows the weight of the
different soft constraints used in the scheduler to optimize average FET. Without the simulator, we would have had to execute the
same experiments on a dedicated testing infrastructure but were able, due to faas-sim’s flexibility, enabled through the dynamic
topology creation by Ether, to speed up the optimization process. This shows the ability of faas-sim to enable simulation-driven
adaptations and that the domain model translates to real-world systems by using the simulation outcomes in the scheduler.

4.2 faas-sim traces
We presented in Section 3.2.5 and Section 3.2.6 faas-sim’s resource and performance model, respectively. In the following,
we want to highlight traces included in faas-sim and ready to use. The traces are split into performance (i.e., mean FET per
invocation) and resources (i.e., resource usage per invocation). Table 1 shows our testbed, which contains a variety of typical
edge devices. It includes modern embedded AI devices (i.e., Nvidia’s Jetson series9), to resource-constrained Single Board

9https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/

RAITH ET AL 23

0 20 40 60 80
Value

Fio

Mobilenet Inf. TFlite

Python Pi

Resnet50 Inf. CPU

Resnet50 Inf. GPU

Resnet50 Preprocessing

Resnet50 Train CPU

Resnet50 Train GPU

Speech Inf. GPU

Speech Inf. TFlite

TF GPU

Resource
RAM %
CPU %

Figure 13 Mean CPU and RAM usage in % per function invocation across all devices.

Computers (i.e., Raspberry Pi, Rock Pi) and a PC with an Nvidia GPU (i.e., Xeon (GPU)). We collect traces from the following
functions.

• AI-based object classification inference and training (i.e., Resnet5065, Mobilenet66)
• AI-based speech-to-text inference (i.e., DeepSpeech67)
• Matrix multiplication using Tensorflow68

• A Python-based function that calculates Pi
• I/O heavy workload (i.e., Fio10)

Tensorflow offers two implementations; one that targets inference on resource-constrained devices (i.e., TFlite11) and the
regular TF2 distribution12. We perform inference and training using TF2 on GPUs and inference using TFLite. Table 2 shows
the average FET in seconds over 100 requests for each device. Note that × means the function has not been profiled on that
particular device. This can have two reasons: the execution mode is not supported (i.e., because the device does not have a
hardware accelerator), or the execution failed (e.g., due to low resources). The average CPU and RAM usage per request across
all devices are shown in Figure 19. This figure shows that resource usage vastly differs across devices. Note that the Resnet50
Train CPU has only been executed on the Intel NUC.

These traces enable our performance and resource modeling approaches.

4.3 Network simulation evaluation
As we described in Section 3.2.7, Ether, the network model underlying faas-sim, uses a flow-based model to simulate data
transfer between nodes, as opposed to a packet-level simulation like ns-3. This trades off fidelity (the ability to simulate network
QoS like packet loss) against performance (running simulations faster).

To that end, we demonstrate our networking simulation a) produces similar results to ns-3 when simulating node-to-node
transfer of data that is characteristic to data-intensive serverless edge computing workloads9 (at least in simple scenarios), and b)
accurately replicates real-world geo-distributed network scenarios such as the cloud testbed used in the evaluation of EMMA27.

10https://fio.readthedocs.io/en/latest/fio_doc.html
11https://www.tensorflow.org/lite
12https://www.tensorflow.org/

24 RAITH ET AL

1000
Mbps

1000 Mbps

1000 Mbps

100 Mbps

100 Mbps

Switch

Raspberry Pi 4
Server

Router

Raspberry Pi 4
Client

Raspberry Pi 3
Client

Raspberry Pi 3
Client

Raspberry Pi 4
Client

1000
Mbps

Figure 14 Testbed used for basic node-to-node data transfer experiments.

We should note that these experiments do not yet provide conclusive evidence that any edge computing networking scenario
can be accurately modeled with Ether and faas-sim or that the reduced fidelity provides good enough results for all scenarios.
As we argued in Section 3.2.7, and as we show in the evaluation, the extra fidelity may not be necessary to draw meaningful
conclusions for the systems that faas-sim targets. That said, more evidence is needed to generalize this statement. Specifically,
more experiments are needed to show how simulation accuracy behaves in scenarios where many flows compete for scarce
networking resources for prolonged periods of time.

4.3.1 Comparison to packet-level simulation
We first want to understand whether our flow-based network simulator can accurately replicate basic scenarios of node-to-node
data transfer, which is typical in serverless edge computing systems like the ones presented in69,9. This includes transmitting
individual images for ML inference, video files over Internet uplinks, or pulling container images from worker nodes.
Methodology
To that end, we run these basic scenarios on a real-world testbed with an emulated network topology. Then, we replicate the
scenarios first on the baseline packet-level simulator ns-3 and compare it to running the experiments on our simulator.

Figure 14 shows the testbed setup and also indicates which devices act as servers and clients. Our testbed consists of three
Raspberry Pi 4, two Raspberry Pi 3, an unmanaged network switch, and one EdgeRouter X. We model the network topology
in ns-3 and Ether and execute the experiments in each simulator and on the testbed. Transferring data via HTTP is one of the
main use cases in our simulation, as described in Section 3.2.7, so our experiments build on these technologies. Specifically,
the scenarios consist of an Apache HTTP server and multiple clients downloading files using the HTTP client curl. The file size
varies between experiment runs and is based on real-world observations:

• 1MB: the median size of a graphical image from a desktop web page (as of February 2023)70.
• 10MB: 90th percentile size of a video on the Internet70.
• 200MB: represents a Docker container image that contains a serverless function workload.

We perform two types of experiments we label seq and par. The seq experiment tests one client downloading a file from one
server (i.e., one flow over one link). The par experiment tests the network behavior of multiple clients downloading the file in
parallel from the same server (i.e., multiple flows over one link). We perform each experiment run with one or multiple clients
downloading one file from the same server and repeat this procedure 400 times. However, due to ns-3’s deterministic behavior,
we only executed each experiment once.
Results
Figure 15b and Figure 15c show the relative error between the average download duration measured on the testbed and from the
simulations. Specifically, we collect the duration of each download from each client, and the figures aggregate the errors across
all four clients (i.e., two Raspberry Pi 3 and two Raspberry Pi 4). Figure 15b shows that the relative error of the Seq experiments

RAITH ET AL 25

rp
i3_0

rp
i3_1

rp
i4_1

rp
i4_2

0

5

10

15

20

25

30

D
u
ra

ti
o
n
 i
n
 s

e
co

n
d

s

Testbed Ether ns-3

rp
i3_0

rp
i3_1

rp
i4_1

rp
i4_2

rp
i3_0

rp
i3_1

rp
i4_1

rp
i4_2

(a) Par network simulation experiments with 200 Megabyte file

1 10 200

size

0

5

10

15

20

25
Simulation

NS-3

Ether

R
e
la

ti
v
e
 E

rr
o
r

(%
)

(b) Relative to the ground truth in the Seq experiments.

1 10 200

size

0

10

20

30

40

50

60

70

80
Simulation

NS-3

Ether

R
e
la

ti
v
e
 E

rr
o
r

(%
)

(c) Relative to the ground truth in the Par experiments.

Figure 15 Results of basic data transfer scenarios on testbed, ns-3, and Ether.

is relatively low. ns-3’s variance with the 1 Megabyte file is high because it could simulate the Raspberry Pi 3 client accurately
(i.e., 1.06% error), while the simulation error of the Raspberry Pi 4 was 28%. In contrast, the experiments with 10 Megabyte
file size are reversed, and the Raspberry Pi 4 simulation was more accurate. However, the error of Ether stays under 7% across
file sizes.

Figure 15c shows the relative error of the Par experiments which shows that the relative error can be high with increasing
file sizes. However, both simulators show similar errors, whereas NS-3 is more accurate than Ether. We think this high error
rate in the parallel experiments is mainly caused due to the testbed’s components (i.e., Raspberry Pis) and the fast network
congestion. Both simulators do not model or consider the performance or hardware and, therefore, can not accurately reflect the
low performance of the resource-constrained devices. Figure 15a shows that both simulators produce similar and steady results,
but the durations measured on the testbed vary greatly.

4.3.2 Replicating real-world experiments
Now that we have seen that basic networking scenarios produce good results, we want to demonstrate that our simulator can
replicate more complex real-world scenarios representative of edge computing systems. To that end, we replicated an experiment
we have previously performed on a real-world testbed when evaluating the elastic MQTT middleware system EMMA27. EMMA
is tailored to geo-distributed scenarios and aims to reduce end-to-end latencies in pub/sub systems by leveraging edge resources
for brokering messages. It uses a custom protocol to monitor the network distance between clients and brokers, essential to
making EMMA automatically re-configure client-broker connections to optimize latencies. We later extended EMMA to auto-
scale brokers based on edge resources based on demand in proximity71. Because both this monitoring protocol and pub/sub
messaging in IoT are network-bound workloads, we consider EMMA a good candidate for evaluating our network simulation.

The specific experiment we replicate is described in detail in27. The left image in Figure 16 shows the evaluation testbed.
It involves the deployment of clients and brokers in three different cloud regions, and the experiment creates both clients and
brokers in different regions at specific times during the experiment. We measured the latencies of different MQTT topics that
spanned different regions, shown in the center image of Figure 16. The various peaks and dips in latency come from clients and
brokers leaving and entering the network. We then replicated this topology using Ether, and plugged in the measured Internet
latencies as distributions into the simulator. Within a cloud region, we assumed high-bandwidth 10 GB/s LAN links. Then,
we modeled the experiment as a faas-sim benchmark, which executed roughly the same events, and simulated clients produced
similar workloads. The image on the right in Figure 16 shows the results from the same experiment that we modeled in Ether
and faas-sim. A visual interpretation of the data shows that the general behavior of the system was modeled correctly. The
x-axis is slightly misaligned because the experiment time was measured differently, and the latencies in the simulated results
are more coarse-grained averages which is why the graphs are smoother. As discussed in27, some latency peaks result from
Java VM warmup and buffering, which the simulation cannot capture. This is valuable for researchers, as platform-specific
performance aspects should be considered explicitly. Overall, however, we showed that the simulation provided good enough
results compared to real-world experiments, so we could move forward in evaluating our auto-scaling approach in71 using
simulation data. Detailed results and the remaining simulation scenarios of scaling brokers can be found in71.

26 RAITH ET AL

us-east eu-west

eu-central

BrokerGateway BrokerGateway

Controller

... ...

Gateway

Broker

98 ms 27 ms

85 ms

0

50

100

150

00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09
0

50

100

150

200

topic
eu-west
global
us-eastla

te
n
cy

 m
s

(m
e
a
su

re
d
)

,m
e
a
n
 R

T
T
 m

s
(s

im
u
la

te
d

)

Figure 16 Real-world multi-region cloud testbed (left), evaluation results of EMMA on the testbed (center), and results from
experiment replication in Ether (right).

Python Process

of-watchdog Flask

W

o

r

k

e

r

W

o

r

k

e

r

W

o

r

k

e

r

W

o

r

k

e

r

Handler

Function

of-watchdog

HTTP mode

Python
Process

Handler

Function

Python
Process

Handler

Function

Fork mode

Figure 17 of-watchdog execution modes

4.4 Flexible platform design
In the following, we show Function Simulators implemented in faas-sim. Specifically, they model OpenFaaS’ reverse proxy
(of-watchdog13), which acts as the base to implement functions in OpenFaaS. To implement a function in OpenFaaS, users
implement a handle function that is called through a Go-based reverse proxy (i.e., of-watchdog). The execution mode of the
reverse proxy determines how it invokes the handle function. We focus on two execution modes and assume the function is
implemented in Python. Figure 17 shows the HTTP and Fork execution modes.

The HTTP execution mode starts a Flask HTTP server and re-directs each call to this server. The HTTP server internally
uses a queueing mechanism with a pre-defined set of workers that call the Handler Function72. The Fork execution mode forks
for each incoming request a new Python process which executes the Handler Function. The HTTP execution mode can cache
expensive resources shared among the workers. The Fork mode is computationally more expensive and incurs higher latency
because it starts a new Python process for each request. The following shows how these two modes are implemented in faas-
sim as Function Simulators. The classes are HTTPWatchdog and ForkingWatchdog and extend the Watchdog class. The three
(simplified) classes are shown in Figure 18. The HTTPWatchdog initializes during setup a SimPy queue and allows up to a user-
defined number of concurrent requests. The invocation waits for a free worker, claims resources, executes the function, releases
the resources, and frees the queue. Simulation users must implement the methods that model the function execution and resource
usage. The ForkingWatchdog invokes the user’s supplied methods. It is up to the simulation users to simulate the creation of
the Python process accurately and also consider that function invocations may fail if there are too many because of resource
exhaustion. However, this example shows the flexibility of faas-sim’s core simulation component, the Function Simulator, and
its ability to mimic real-world behavior realistically.

13https://github.com/openfaas/of-watchdog

RAITH ET AL 27

HTTPWatchdog
def setup(env):

 # create worker queue, with length of 4

 self.queue = simpy.Resource(env, capacity=4)

def invoke(env):

 # wait till worker is free

token = self.queue.request()
yield token

claim resources for function invocation
yield from self.claim_resources(env)

execute request, method is abstract and

users must implement it
yield from self.execute(env, req)

release resources
yield from self.release_resources(env)

free worker
self.queue.release(token)

ForkingWatchdog

def invoke(env):

 # claim resources for function invocation

yield from self.claim_resources(env)

execute request, method is abstract and

users must implement it
yield from self.execute(env, req)

release resources
yield from self.release_resources(env)

Watchdog

def teardown(env, replica):
 while (self.inflight_requests() != 0):
 yield env.timeout(self.teardown_wait_interval)
 yield env.timeout(0)

Figure 18 Classes implementing OpenFaaS’ watchdogs.

4.5 faas-sim resource usage
Lastly, we want to demonstrate that faas-sim is sufficiently performant to simulate long-running scenarios even on developer
machines. Moreover, understanding the resource usage of faas-sim helps when using faas-sim as a co-simulator in a system to
make runtime decisions.

To that end, we execute a series of experiments to evaluate the resource usage of the simulator in terms of CPU, memory, and
execution run time. Specifically, we model a Smart City topology with 15 edge clusters and one cloud cluster. Each computing
cluster has one client (i.e., Intel NUC) and multiple devices (i.e., Xeon, Jetson TX2, Nano, and NX). This allows us to observe
the resource usage over time. Each client sends up to 100 requests per second with a constant workload, and we deploy 30
function replicas of the aforementioned Resnet50 Inference CPU function. However, the number of requests each client sends
differs 100, 1000, and 2500. The total requests sent across the system are 1500, 15000, and 37500, respectively. We simulate
these scenarios using the traces (i.e., FET and resource usage) shown before and deactivate the Resource Monitor for these
experiments as our system does not use the resource metrics gathered during the simulation. The simulations are started natively
(i.e., using Python), and the test host has 32GB RAM and an i7 7700K@4.2 GHz with four cores (and eight threads).

Each scenario is executed five times, and Figure 19 shows the CPU and memory usage of the host. Before conducting the
experiments, we measured the baseline consumption of the host and only show the isolated memory usage of the simulation.
The CPU results contain other processes, but due to Python’s single-threaded execution model, the simulation constantly uses
100% of one CPU core (i.e., 13% relative to all available threads).

5 10 15 20 25
Time passed in seconds

15

20

25

CP
U

us
ag

e
in

 %

0.12

0.14

0.16

0.18

RA
M

 u
sa

ge
 in

 G
BCPU

RAM

(a) 100 requests per client.

0 50 100 150 200
Time passed in seconds

15.0

17.5

20.0

22.5

25.0

CP
U

us
ag

e
in

 %

0.2

0.4

0.6

0.8

RA
M

 u
sa

ge
 in

 G
BCPU

RAM

(b) 1000 requests per client.

0 200 400
Time passed in seconds

15.0

17.5

20.0

22.5

25.0

CP
U

us
ag

e
in

 %

0.5

1.0

1.5

2.0

RA
M

 u
sa

ge
 in

 G
BCPU

RAM

(c) 2500 requests per client.

Figure 19 CPU and RAM usage over three different experiments

Memory usage increases over time and can reach up to 2GB during the simulation, which lasts over 8 minutes. While this
seems problematic, we show in the following that the resource usage is constant with few adjustments. Figure 20 shows the
scenario in which each client sends 2500 requests. Contrary to the other experiment runs, we deactivated the logging framework
(i.e., Metrics) and saw that the simulation’s memory usage is much lower and grows slower. We also provide an optional logger

28 RAITH ET AL

implementation that continuously writes the internal data structures to disk and removes the old ones, thus, avoiding the memory
increase observed in the results.

0 100 200 300 400 500
Time passed in seconds

15

20

25

30

35

40

45

CP
U

us
ag

e
in

 %

0.2

0.3

0.4

0.5

0.6

0.7

RA
M

 u
sa

ge
 in

 G
B

CPU
RAM

Figure 20 CPU and RAM usage with 2500 requests per client but no logging.

5 RELATED WORK

5.1 Specialized high fidelity simulators
Some simulators were implemented exclusively for evaluating a new adaptation technique73. Similarly, particular simulations
aim at near-identical outcomes as the ground truth for specific system components. For example, Eismann et al. introduce
Sizeless for predicting memory-related configurations to cut client costs and improve provider resource efficiency74. Later, Lin
et al. propose formally modeling FaaS applications to aid the implementation of an accurate cost model73.

The downside is that specialized simulators are costly and more dependent on their intended platforms and applications.
Worse, in work where the simulator is not the contribution and is only a necessary side product, it may not generalize well outside
its intended scope. Consequently, we provide default implementations that simulation users must populate with realistic traces
to cover various applications and platforms. Since the components are interchangeable, it is possible to incorporate arbitrary
methods for performance and resource modeling.

Importantly, this design decision allows faas-sim to retain relevancy as the state-of-the-art evolves and promotes a streamlined
research directive.

5.2 General edge-cloud simulations
Sphere75 is an extension of the SCORE76 simulator. Sphere aims to enable the implementation of topology- and orchestration
models for edge computing and fast-paced simulation. They evaluate different platform architectures and cover many aspects
of the edge-cloud continuum. However, a drawback they state to solve in future work is that their code needs to be more easily
extendible. In contrast, faas-sim simulation users are encouraged to extend and modify the simulation. Wang et al.77 present their
open-source simulation platform SimEdgeIntel. The authors want to offer a simulation tool with a low entry barrier to implement
new resource management strategies for Edge Intelligence due to the cross-platform and cross-language support. Their system
model focuses on device-to-device (D2D) communication and considers network handovers in the simulation. Alwasel et al.19
present IotSim-Osmosis, an extension of CloudSim to model and simulate IoT applications across the edge-cloud continuum.
They envision a multi-layered architecture comprising IoT, edge, cloud, and software-defined wide area networks (SD-WAN).
Their simulation supports a variety of communication protocols. The tool also supports custom policies to control components
(i.e., task scheduling and routing). IotSim-Edge18 also extends CloudSim and provides entities to model different edge-cloud
aspects, such as mobility, energy consumption and IoT protocols (e.g., CoAP) and network protocols (e.g., 4G). The simulation
scenarios heavily focus on IoT applications (e.g., stream processing) and offer a GUI to create scenarios. IotSim-SDWAN78

RAITH ET AL 29

focuses on providing accurate network simulations for edge-cloud systems. Specifically, they enable software-defined wide area
networks (SDWAN) modeling and introduce a system model to replicate edge-cloud networks realistically.

The simulators above aim to simulate different application scenarios and their concepts. However, faas-sim can integrate
concepts of them, such as focusing on IoT protocols. Therefore, the focus of this work is dedicated serverless simulations.

5.3 Serverless simulations
To compare existing serverless simulators, Table 3 summarizes whether and to what extent they support the six use cases
identified in Section 2.2. A ✓, ∼, and × indicate a full, partial, or no coverage, respectively. We consider a feature partially
covered when the work only provides rudimentary support (e.g., no support for fine-grained customization) or when it seems
technically possible to cover the feature through manual extension.

SimLess by Ristov et al.21 introduces abstractions for performing numerous experiments in various conditions without requir-
ing extensive parameter configurations. Although SimLess considers heterogeneous environments and supports performance
modeling for client programmers, it does not provide an interface to implement execution models for function invocation.
Additionally, it does not support resource planning and serverless adaptations to facilitate research on serverless platforms.

Mastenbroek et al.15 re-design and extend OpenDC 79 to support serverless computing. The low-level nature of OpenDC
naturally provides interchangeable interfaces but incurs higher complexity. SimLess and OpenDC contrast each other. While
SimLess focuses on client programmers and trades reduced configuration complexity with less flexibility, OpenDC focuses on
platform providers with powerful modeling tools for highly configurable simulations of data centers. Additionally, the former
focuses on client programmers, and the latter focuses on platform providers with powerful modeling tools for highly configurable
simulation of data centers. FaaS-sim provides a middle ground between SimLess and OpenDC to support client programmers
and platform providers by providing interchangeable high-level abstractions.

Jeon. et al., introduce DFaasCloud 17 as an extension of CloudSim46. We consider their work a proof-of-concept since their
serverless support is rudimentary, and simulating complex workloads is infeasible. Moreover, the official repository did not see
any contributions after its initial release. SimFaaS by Mahmoudi and Khazae20 aids client programmers and platform providers
estimate costs. Nevertheless, other than extensively covering cost prediction, it has several limitations. First, it explicitly only
supports the scale-pre-request pattern, i.e., simulations with resource-based or concurrency value scaling are impossible. Second,
focus on existing public cloud providers. In contrast, faas-sim is not limited to existing cloud platform providers by support-
ing simulations for hybrid edge-cloud environments and allowing simulation users to implement arbitrary serverless function
adaptation techniques.

Lastly, we considered the work by Bhardwaj et al.80. and Manner et al.81. The former introduces KubeKlone80, a simulation-
based framework based on uqSim82 focusing on a simulator to train AI-based operations for microservice deployments. The latter
introduces a simulation tool for client programmers to find suitable configurations by quickly permuting various parameters.
Nevertheless, they do not associate any open-source repository with their work.

Table 3 Comparing simulators supporting serverless abstractions
SimLess OpenDC 2.0 DFaaSCloud SimFaaS faas-sim

Application Performance Estimation ✓ ✓ ✓ ✓ ✓

Performance Modeling ∼ ✓ ∼ ∼ ✓

Resource Planning × ✓ ✓ × ✓

First-class Serverless Adaptations × ∼ ∼ × ✓

Co-Simulation Driven Adaptations × ∼ × × ✓

Edge-Cloud Continuum × × ✓ × ✓

Simulation Configurability Medium High Low Low Low-High
Topology Generation × UI JSON, UI × Code13

To summarize, the main differences between faas-sim and the simulators presented in Section 5.2 and Section 5.3 are:

30 RAITH ET AL

• Simulation focus: our system model resembles serverless computing and allows users to evaluate serverless edge platforms.
The previous works do not always replicate a specific platform architecture (e.g., general edge-cloud simulations).

• System models: faas-sim aims to provide a playground for researchers and practitioners, allowing them to introduce new
models based on our foundation and does not expect a specific resource model.

• Application simulation: to the best of our knowledge, our Function Simulator approach is a novel way of modeling appli-
cations and gives simulation users great flexibility. Others only allow users to specify the number of instructions required
(e.g., CloudSim-based simulations) or only need the application duration (e.g., SimFaaS20).

• Serverless Function Adaptations, including request routing, scaling, and scheduling of function instances, are only mod-
eled as first-class citizens in faas-sim. Inevitably, this also impacts the ability of the simulators to be used in co-simulation
driven adaptations. Specifically, SimFaaS and SimLess do not allow simulation users to specify the function adaptation
implementations, DFaaSCloud allows custom scheduler adaptations but does not outline customization of the scaling
component, OpenDC 2.0 appears to only allow users to select the function scheduler and request routing implementations.
However, not the autoscaler implementation83.

• Co-simulation driven adaptations we consider OpenDC 2.0 and DFaaSCloud only partially fulfilling this criterion as
they allow us to inject custom adaptations to some extent. Contrary, faas-sim not only enables users to customize the
three major adaptations, but it also uses the skippy-scheduler internally that works the same way the default Kubernetes
scheduler does, thus, allowing to easily optimize scheduling approaches and apply them in the real world.

• Simulation Configurability is based on the parameters that simulation users can tweak. For example, SimFaaS and DFaaS-
Cloud offer only high-level parameters that describe the general characteristics of the deployed functions (e.g., arrival
rate, execution duration, etc.). SimLess takes a different approach by observing the execution of functions on public cloud
platforms and using the measurements to feed the simulation. OpenDC 2.0 has a high level of configurability as users
design the data centers from the ground up and can tweak any aspect, which holds for faas-sim as well as the topology
creation considers hardware characteristics but leaves it up to the simulation users to incorporate these details in the sim-
ulation. Therefore, faas-sim also allows performing simulations without much configuration similar to DFaaSCloud and
SimFaaS. Moreover, OpenDC 2.0 tries to model data centers on a very fine-grained level while faas-sim tries to model
serverless edge platforms.

• faas-sim is the only one with first-class citizen support for generating topologies based on code. OpenDC 2.0 gives users
an interface where they can manually create the layout of a data center, while DFaaSCloud offers an existing GUI and
accepts JSON as input. SimFaaS and SimLess both do not allow any topology modeling.

6 CONCLUSION

Serverless edge computing is an emerging platform paradigm that extends the promising serverless computing paradigm. These
paradigms abstract the infrastructure from developers and promise cost-efficient deployment through autonomous management.
However, serverless computing platforms are cloud-centric and have yet to adapt to the emerging edge-cloud continuum. Com-
bining all resources and enabling function execution across the continuum requires novel platform ideas that move away from
the cloud-centric design and distributed and decentralized control and data plane. We identified two main tasks each serverless
edge computing platform has to implement: platform architecture and serverless function adaptations. The edge-cloud con-
tinuum deepens the complexity of implementing them and differentiates them from cloud-centric platforms. To this end, we
presented faas-sim, an open-source trace-driven discrete-event Python simulator that can support researchers and practitioners
in developing and evaluating serverless edge computing systems. Our evaluation demonstrated that faas-sim is usable in a wide
range of scenarios out of the box while allowing users to extend and modify it to their use case. We have shown that our net-
working simulation provides similar results to state-of-the-art packet-level simulators such as ns-3 and in an evaluation using a
cloud testbed setup. However, these results do not necessarily generalize to more complex scenarios or that any scenario can be
accurately modeled. More experiments are needed to show the accuracy of the network simulation in complex scenarios. Our
trace-driven resource modeling approach for simulating workloads provides a flexible and accurate framework for modeling
various workloads and heterogeneous computing platforms. While we have evaluated it using the herein presented functions,

RAITH ET AL 31

our single-tenancy and multi-tenancy approaches should be re-evaluated when adding new devices and functions or including
new simulation aspects. faas-sim has been used successfully in several publications to evaluate different systems aspects, from
scheduling performance comparisons to simulating large-scale distributed edge computing infrastructure to using faas-sim as
co-simulator to optimize system parameters at runtime. faas-sim is part of the Edgerun project, an ecosystem of tools to help
advance the research of edge-cloud system challenges. The simulator users can use these tools to automatically integrate their
testbeds and profiling experiments to gather trace data for their simulation scenarios. In future work, we want to explore em-
bedding faas-sim into the control loop of operating serverless systems. With a high-performant trace-driven simulator, we can
incrementally build a digital twin of the real infrastructure and use trace data from real workload execution to refine the simulation
model at runtime. The simulator can then be used as an engine to evaluate placement or scaling decisions stochastically.

Acknowledgements
The authors want to thank their following colleagues and students who have contributed to this publication by running exper-
iments for their theses, some of which were presented here, and contributing code to faas-sim and Ether: Andreas Bruckner,
Cynthia Marcelino, Theresa Müller, Jacob Palecek, Paul Prüller, Alexander Rashed, Alexander Woda. We also thank Alexander
Knoll who has helped with setting up various testbeds that were presented throughout the paper. Moreover, we want to thank
the reviewers that provided valuable input that helped us improve the paper.

References

1. Aslanpour MS, Toosi AN, Cicconetti C, et al. Serverless Edge Computing: Vision and Challenges. In: ACSW ’21.
Association for Computing Machinery. ; 2021; New York, NY, USA

2. Jonas E, Schleier-Smith J, Sreekanti V, et al. Cloud programming simplified: A berkeley view on serverless computing.
arXiv preprint arXiv:1902.03383 2019. doi: 10.48550/ARXIV.1902.03383

3. Raith P, Nastic S, Dustdar S. Serverless Edge Computing—Where We Are and What Lies Ahead. IEEE Internet Computing
2023; 27(3): 50–64.

4. Xie R, Tang Q, Qiao S, Zhu H, Yu FR, Huang T. When Serverless Computing Meets Edge Computing: Architecture,
Challenges, and Open Issues. IEEE Wireless Communications 2021; 28(5): 126-133. doi: 10.1109/MWC.001.2000466

5. Pfandzelter T, Bermbach D. tinyfaas: A lightweight faas platform for edge environments. In: 2020 IEEE International
Conference on Fog Computing (ICFC). IEEE. ; 2020: 17–24.

6. Tamiru MA, Pierre G, Tordsson J, Elmroth E. mck8s: An orchestration platform for geo-distributed multi-cluster en-
vironments. In: 2021 International Conference on Computer Communications and Networks (ICCCN). IEEE; 2021:
1-10

7. Lähderanta T, Leppänen T, Ruha L, et al. Edge computing server placement with capacitated location allocation. Journal
of Parallel and Distributed Computing 2021; 153: 130-149. doi: https://doi.org/10.1016/j.jpdc.2021.03.007

8. Wolski R, Krintz C, Bakir F, George G, Lin WT. Cspot: Portable, multi-scale functions-as-a-service for iot. In: Proceedings
of the 4th ACM/IEEE Symposium on Edge Computing. ; 2019: 236–249.

9. Rausch T, Rashed A, Dustdar S. Optimized container scheduling for data-intensive serverless edge computing. Future
Generation Computer Systems 2021; 114: 259-271. doi: https://doi.org/10.1016/j.future.2020.07.017

10. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R. Benchmarking Cloud Serving Systems with YCSB. In: Pro-
ceedings of the 1st ACM Symposium on Cloud Computing. Association for Computing Machinery; 2010; New York, NY,
USA: 143–154

11. Duplyakin D, Ricci R, Maricq A, et al. The Design and Operation of CloudLab. In: 2019 USENIX Annual Technical
Conference (USENIX ATC 19). USENIX Association; 2019; Renton, WA: 1–14.

http://dx.doi.org/10.48550/ARXIV.1902.03383
http://dx.doi.org/10.1109/MWC.001.2000466
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2021.03.007
http://dx.doi.org/https://doi.org/10.1016/j.future.2020.07.017

32 RAITH ET AL

12. Verma A, Pedrosa L, Korupolu M, Oppenheimer D, Tune E, Wilkes J. Large-Scale Cluster Management at Google with
Borg. In: EuroSys ’15. Association for Computing Machinery; 2015; New York, NY, USA

13. Rausch T, Lachner C, Frangoudis PA, Raith P, Dustdar S. Synthesizing Plausible Infrastructure Configurations for Eval-
uating Edge Computing Systems. In: 3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20). USENIX
Association; 2020.

14. Raith P, Rausch T, Prüller P, Furutanpey A, Dustdar S. An End-to-End Framework for Benchmarking Edge-Cloud Cluster
Management Techniques. In: 2022 IEEE International Conference on Cloud Engineering (IC2E). IEEE. ; 2022.

15. Mastenbroek F, Andreadis G, Jounaid S, et al. OpenDC 2.0: Convenient modeling and simulation of emerging technolo-
gies in cloud datacenters. In: 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing
(CCGrid). IEEE. ; 2021: 455–464.

16. Raith P, Rausch T, Dustdar S, Rossi F, Cardellini V, Ranjan R. Mobility-Aware Serverless Function Adaptations Across
the Edge-Cloud Continuum. In: 2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC).
IEEE; 2022: 123-132

17. Jeon H, Cho C, Shin S, Yoon S. A CloudSim-extension for simulating distributed functions-as-a-service. In: 2019 20th
International Conference on parallel and distributed computing, applications and technologies (PDCAT). IEEE. ; 2019:
386–391.

18. Jha DN, Alwasel K, Alshoshan A, et al. IoTSim-Edge: A simulation framework for modeling the behavior of In-
ternet of Things and edge computing environments. Software: Practice and Experience 2020; 50(6): 844-867. doi:
https://doi.org/10.1002/spe.2787

19. Alwasel K, Jha DN, Habeeb F, et al. IoTSim-Osmosis: A framework for modeling and simulating IoT
applications over an edge-cloud continuum. Journal of Systems Architecture 2021; 116: 101956. doi:
https://doi.org/10.1016/j.sysarc.2020.101956

20. Mahmoudi N, Khazaei H. SimFaaS: A Performance Simulator for Serverless Computing Platforms. In: Helfert M, Ferguson
D, Pahl C. , eds. Proceedings of the 11th International Conference on Cloud Computing and Services Science, CLOSER
2021, Online Streaming, April 28-30, 2021SCITEPRESS; 2021: 23–33

21. Ristov S, Hautz M, Hollaus C, Prodan R. SimLess: Simulate Serverless Workflows and Their Twins and Siblings in Fed-
erated FaaS. In: Proceedings of the 13th Symposium on Cloud Computing. Association for Computing Machinery; 2022;
New York, NY, USA: 323–339

22. Sonmez C, Ozgovde A, Ersoy C. EdgeCloudSim: An Environment for Performance Evaluation of Edge Computing Systems.
In: 2017 Second International Conference on Fog and Mobile Edge Computing. IEEE. ; 2017: 39–44.

23. Gupta H, Vahid Dastjerdi A, Ghosh SK, Buyya R. iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments. Software: Practice and Experience 2017;
47(9): 1275-1296. doi: https://doi.org/10.1002/spe.2509

24. Matloff N. Introduction to discrete-event simulation and the simpy language. Davis, CA. Dept of Computer Science.
University of California at Davis. Retrieved on August 2008; 2(2009): 1–33.

25. OpenFaaS . OpenFaaS. 2016. https://www.openfaas.com/. Accessed February 28, 2023.
26. Burckhardt S, Gillum C, Justo D, Kallas K, McMahon C, Meiklejohn CS. Durable Functions: Semantics for Stateful

Serverless. Proc. ACM Program. Lang. 2021; 5(OOPSLA). doi: 10.1145/3485510
27. Rausch T, Nastic S, Dustdar S. Emma: Distributed qos-aware mqtt middleware for edge computing applications. In: 2018

IEEE International Conference on Cloud Engineering (IC2E). IEEE. ; 2018: 191–197.
28. Yao X, Chen N, Yuan X, Ou P. Performance optimization of serverless edge computing function offload-

ing based on deep reinforcement learning. Future Generation Computer Systems 2023; 139: 74-86. doi:
https://doi.org/10.1016/j.future.2022.09.009

http://dx.doi.org/https://doi.org/10.1002/spe.2787
http://dx.doi.org/https://doi.org/10.1002/spe.2787
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2020.101956
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2020.101956
http://dx.doi.org/https://doi.org/10.1002/spe.2509
https://www.openfaas.com/
http://dx.doi.org/10.1145/3485510
http://dx.doi.org/https://doi.org/10.1016/j.future.2022.09.009
http://dx.doi.org/https://doi.org/10.1016/j.future.2022.09.009

RAITH ET AL 33

29. Rodriguez MA, Buyya R. Container-based cluster orchestration systems: A taxonomy and future directions. Software:
Practice and Experience 2019; 49(5): 698-719. doi: https://doi.org/10.1002/spe.2660

30. Deng S, Zhao H, Fang W, Yin J, Dustdar S, Zomaya AY. Edge Intelligence: The Confluence of Edge Computing and
Artificial Intelligence. IEEE Internet of Things Journal 2020; 7(8): 7457-7469. doi: 10.1109/JIOT.2020.2984887

31. Raith P, Dustdar S. Edge Intelligence as a Service. In: 2021 IEEE International Conference on Services Computing (SCC).
IEEE. ; 2021: 252–262.

32. Knative . Knative. 2018. https://knative.dev/docs/. Accessed February 28, 2023.
33. Fission . Fission. 2016. https://fission.io/. Accessed February 28, 2023.
34. IBM . OpenWhisk. 2016. https://openwhisk.apache.org/ Accessed February 28, 2023.
35. Amazon . AWS Lambda. 2014. https://aws.amazon.com/lambda/. Accessed February 28, 2023.
36. Baresi L, Hu DYX, Quattrocchi G, Terracciano L. NEPTUNE: Network- and GPU-Aware Management of Serverless

Functions at the Edge. In: Proceedings of the 17th Symposium on Software Engineering for Adaptive and Self-Managing
Systems. Association for Computing Machinery; 2022; New York, NY, USA: 144–155

37. Crankshaw D, Sela GE, Mo X, et al. InferLine: Latency-Aware Provisioning and Scaling for Prediction Serving Pipelines.
In: Proceedings of the 11th ACM Symposium on Cloud Computing. Association for Computing Machinery; 2020; New
York, NY, USA: 477–491

38. Shafiei H, Khonsari A, Mousavi P. Serverless Computing: A Survey of Opportunities, Challenges, and Applications. ACM
Computing Surveys 2022; 54(11s). doi: 10.1145/3510611

39. Rossi F, Nardelli M, Cardellini V. Horizontal and vertical scaling of container-based applications using reinforcement
learning. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE. ; 2019: 329–338.

40. Mayer R, Graser L, Gupta H, Saurez E, Ramachandran U. EmuFog: Extensible and Scalable Emulation of Large-scale Fog
Computing Infrastructures. In: 2017 IEEE Fog World Congress. IEEE. ; 2017: 1–6.

41. Zhong Z, Xu M, Rodriguez MA, Xu C, Buyya R. Machine Learning-Based Orchestration of Containers: A Taxonomy and
Future Directions. ACM Computing Surveys 2022; 54(10s). doi: 10.1145/3510415

42. Mampage A, Karunasekera S, Buyya R. A Holistic View on Resource Management in Serverless Computing Environments:
Taxonomy and Future Directions. ACM Computing Surveys 2022; 54(11s). doi: 10.1145/3510412

43. Tuli S, Poojara SR, Srirama SN, Casale G, Jennings NR. COSCO: Container Orchestration Using Co-Simulation and Gra-
dient Based Optimization for Fog Computing Environments. IEEE Transactions on Parallel and Distributed Systems 2022;
33(1): 101-116. doi: 10.1109/TPDS.2021.3087349

44. Rossi F, Cardellini V, Lo Presti F, Nardelli M. Geo-distributed efficient deployment of containers with Kubernetes. Computer
Communications 2020; 159: 161-174. doi: 10.1016/j.comcom.2020.04.061

45. Kubernetes . Kubernetes. 2014. https://kubernetes.io/. Accessed February 28, 2023.
46. Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R. CloudSim: a toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience 2011;
41(1): 23-50. doi: 10.1002/spe.995

47. Markus A, Kertesz A. A survey and taxonomy of simulation environments modelling fog computing. Simulation Modelling
Practice and Theory 2020; 101: 102042. doi: 10.1016/j.simpat.2019.102042

48. Rausch T, Avasalcai C, Dustdar S. Portable energy-aware cluster-based edge computers. In: 2018 IEEE/ACM Symposium
on Edge Computing (SEC). IEEE. ; 2018: 260–272.

http://dx.doi.org/https://doi.org/10.1002/spe.2660
http://dx.doi.org/10.1109/JIOT.2020.2984887
https://knative.dev/docs/
https://fission.io/
https://openwhisk.apache.org/
https://aws.amazon.com/lambda/
http://dx.doi.org/10.1145/3510611
http://dx.doi.org/10.1145/3510415
http://dx.doi.org/10.1145/3510412
http://dx.doi.org/10.1109/TPDS.2021.3087349
http://dx.doi.org/10.1016/j.comcom.2020.04.061
https://kubernetes.io/
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1016/j.simpat.2019.102042

34 RAITH ET AL

49. Raith PA. Container scheduling on heterogeneous clusters using machine learning-based workload characterization. 2021.
Masterthesis. TU Wien.

50. Rausch T, Hummer W, Muthusamy V. PipeSim: Trace-driven simulation of large-scale AI operations platforms. arXiv
preprint arXiv:2006.12587 2020. doi: 10.48550/ARXIV.2006.12587

51. Henderson TR, Lacage M, Riley GF, Dowell C, Kopena J. Network simulations with the ns-3 simulator. In: SIGCOMM’08
demonstration. Association for Computing Machinery; 2008: 527.

52. Chang X. Network Simulations with OPNET. In: Proceedings of the 31st Conference on Winter Simulation: Simulation—a
Bridge to the Future - Volume 1. Association for Computing Machinery; 1999; New York, NY, USA: 307–314

53. Bertsekas D, Gallager R. Data Networks. Englewood Cliffs, NJ, USA: Prentice Hall. second ed. 1996.
54. Massoulié L, Roberts J. Bandwidth sharing: objectives and algorithms. In: IEEE INFOCOM ’99. Conference on Computer

Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies.
The Future is Now (Cat. No.99CH36320). IEEE. ; 1999: 1395-1403 vol.3

55. Kelly F. Charging and rate control for elastic traffic. European Transactions on Telecommunications 1997; 8(1): 33-37. doi:
10.1002/ett.4460080106

56. Chiu DM, Jain R. Analysis of the increase and decrease algorithms for congestion avoidance in computer networks.
Computer Networks and ISDN Systems 1989; 17(1): 1-14. doi: 10.1016/0169-7552(89)90019-6

57. Morris R. TCP behavior with many flows. In: Proceedings 1997 International Conference on Network Protocols. IEEE. ;
1997: 205-211

58. Catlett CE, Beckman PH, Sankaran R, Galvin KK. Array of Things: A Scientific Research Instrument in the Public Way:
Platform Design and Early Lessons Learned. In: SCOPE ’17. Association for Computing Machinery; 2017; New York, NY,
USA: 26–33

59. 2018 Yellow Taxi Trip Data. 2018. Available at https://data.cityofnewyork.us/Transportation/
2018-Yellow-Taxi-Trip-Data/t29m-gskq.

60. Kolosov O, Yadgar G, Maheshwari S, Soljanin E. Benchmarking in The Dark: On the Absence of Comprehensive Edge
Datasets. In: 3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20). USENIX Association; 2020.

61. Rausch T. A Distributed Compute Fabric for Edge Intelligence. PhD thesis. TU Wien, 2021.
62. Riley GF, Henderson TR. The ns-3 Network Simulator. Modeling and Tools for Network Simulation 2010: 15–34. doi:

10.1007/978-3-642-12331-32

63. Olson RS, Moore JH. TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning. Automated
Machine Learning: Methods, Systems, Challenges 2019: 151–160. doi: 10.1007/978-3-030-05318-58

64. Palecek J. Improving Serverless Edge Computing for Network Bound Workloads. 2022. Master Thesis. TU Wien.
65. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2015. arXiv https://arxiv.org/abs/1512.

03385.doi: 10.48550/ARXIV.1512.03385
66. Howard AG, Zhu M, Chen B, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.

arXiv preprint arXiv:1704.04861 2017. doi: 10.48550/ARXIV.1704.04861
67. Hannun A, Case C, Casper J, et al. Deep Speech: Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567

2014. doi: 10.48550/ARXIV.1412.5567
68. Abadi M, Barham P, Chen J, et al. TensorFlow: A System for Large-Scale Machine Learning. In: 12th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 16). USENIX Association; 2016; Savannah, GA: 265–283.

http://dx.doi.org/10.48550/ARXIV.2006.12587
http://dx.doi.org/10.1002/ett.4460080106
http://dx.doi.org/10.1002/ett.4460080106
http://dx.doi.org/10.1016/0169-7552(89)90019-6
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
http://dx.doi.org/10.1007/978-3-642-12331-3_2
http://dx.doi.org/10.1007/978-3-642-12331-3_2
http://dx.doi.org/10.1007/978-3-030-05318-5_8
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
http://dx.doi.org/ 10.48550/ARXIV.1512.03385
http://dx.doi.org/10.48550/ARXIV.1704.04861
http://dx.doi.org/10.48550/ARXIV.1412.5567

RAITH ET AL 35

69. Rausch T, Hummer W, Muthusamy V, Rashed A, Dustdar S. Towards a Serverless Platform for Edge AI. In: 2nd USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 19). USENIX Association; 2019; Renton, WA.

70. HTTP Archive: State of the Web. https://httparchive.org/reports/state-of-the-web. Accessed February 27, 2023.
71. Bruckner A. Self-adaptive distributed MQTT middleware for edge computing applications. 2022. Master Thesis. TU Wien.
72. Balla D, Maliosz M, Simon C. Open Source FaaS Performance Aspects. In: 2020 43rd International Conference on

Telecommunications and Signal Processing (TSP). IEEE. ; 2020: 358-364
73. Lin C, Mahmoudi N, Fan C, Khazaei H. Fine-Grained Performance and Cost Modeling and Optimization for FaaS Appli-

cations. IEEE Transactions on Parallel and Distributed Systems 2023; 34(1): 180–194. doi: 10.1109/TPDS.2022.3214783
74. Eismann S, Bui L, Grohmann J, Abad C, Herbst N, Kounev S. Sizeless: Predicting the Optimal Size of Serverless Functions.

In: Proceedings of the 22nd International Middleware Conference. Association for Computing Machinery; 2021; New York,
NY, USA: 248–259

75. Fernández-Cerero D, Fernández-Montes A, Javier Ortega F, Jakóbik A, Widlak A. Sphere: Simulator of edge infrastructures
for the optimization of performance and resources energy consumption. Simulation Modelling Practice and Theory 2020;
101: 101966. Modeling and Simulation of Fog Computingdoi: https://doi.org/10.1016/j.simpat.2019.101966

76. Fernández-Cerero D, Fernández-Montes A, Jakóbik A, Kołodziej J, Toro M. SCORE: Simulator for cloud optimiza-
tion of resources and energy consumption. Simulation Modelling Practice and Theory 2018; 82: 160-173. doi:
https://doi.org/10.1016/j.simpat.2018.01.004

77. Wang C, Li R, Li W, Qiu C, Wang X. SimEdgeIntel: A open-source simulation platform for resource management in edge
intelligence. Journal of Systems Architecture 2021; 115: 102016. doi: https://doi.org/10.1016/j.sysarc.2021.102016

78. Alwasel K, Jha DN, Hernandez E, et al. IoTSim-SDWAN: A simulation framework for interconnecting distributed data-
centers over Software-Defined Wide Area Network (SD-WAN). Journal of Parallel and Distributed Computing 2020; 143:
17-35. doi: 10.1016/j.jpdc.2020.04.006

79. Iosup A, Andreadis G, Van Beek V, et al. The OpenDC vision: Towards collaborative datacenter simulation and exploration
for everybody. In: 2017 16th International Symposium on Parallel and Distributed Computing (ISPDC). IEEE. ; 2017:
85–94.

80. Bhardwaj A, Benson TA. KubeKlone: A Digital Twin for Simulating Edge and Cloud Microservices. In: Asia-Pacific
Workshop on Networking (APNet 2022). Association for Computing Machinery. ; 2022: 7.

81. Manner J, Endreß M, Böhm S, Wirtz G. Optimizing Cloud Function Configuration via Local Simulations. In: 2021 IEEE
14th International Conference on Cloud Computing (CLOUD). IEEE; 2021: 168-178

82. Zhang Y, Gan Y, Delimitrou C. uqSim: Scalable and Validated Simulation of Cloud Microservices. arXiv preprint
arXiv:1911.02122 2019.

83. Sallo DH, Kecskemeti G. Towards Generating Realistic Trace for Simulating Functions-as-a-Service. In: Chaves R, B. Heras
D, Ilic A, et al., eds. Euro-Par 2021: Parallel Processing Workshops. vol 13098. Springer International Publishing; 2022;
Cham: 428–439

How to cite this article: P. Raith, T. Rausch, A. Furutanpey, and S. Dustdar (2023), faas-sim: A Trace-Driven Simulation
Framework for Serverless Edge Computing Platforms, Q.J.R. Meteorol. Soc., 2017;00:1–6.

https://httparchive.org/reports/state-of-the-web
http://dx.doi.org/10.1109/TPDS.2022.3214783
http://dx.doi.org/ https://doi.org/10.1016/j.simpat.2019.101966
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2018.01.004
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2018.01.004
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2021.102016
http://dx.doi.org/10.1016/j.jpdc.2020.04.006

	faas-sim: A Trace-Driven Simulation Framework for Serverless Edge Computing Platforms
	Abstract
	Introduction
	Simulation-driven Serverless Edge Computing Design
	Serverless edge computing
	Platform architecture
	Serverless function adaptation strategies

	Simulation use cases
	Resource planning
	Application performance estimation
	Serverless adaptation evaluation
	Co-simulation driven adaptations

	faas-sim
	Conceptual model
	faas-sim architecture
	FaaS System
	Environment
	Trace-driven function simulators
	Trace-driven performance modeling
	Resource modeling
	Stochastic performance models
	Network simulation
	Fault modeling

	User-defined simulation scenarios
	Topology
	Benchmark
	Request generators

	Evaluation
	Simulation use cases
	Application performance estimation
	Evaluating serverless adaptation approaches
	Resource planning
	Co-simulation driven adaptations

	faas-sim traces
	Network simulation evaluation
	Comparison to packet-level simulation
	Replicating real-world experiments

	Flexible platform design
	faas-sim resource usage

	Related Work
	Specialized high fidelity simulators
	General edge-cloud simulations
	Serverless simulations

	Conclusion
	References

